Advertisement

Normal Spectral Emissivity Measurement of Molten Cu–Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

  • Shoya Ueno
  • Yuki Nakamura
  • Ken-Ichi Sugioka
  • Masaki Kubo
  • Takao TsukadaEmail author
  • Masahito Uchikoshi
  • Hiroyuki Fukuyama
Article

Abstract

The normal spectral emissivity of molten Cu–Co alloy with different compositions was measured in the wavelength range of 780 nm to 920 nm and in the temperature range of 1430 K to 1770 K including the undercooled condition by an electromagnetic levitator superimposed with a static magnetic field. The emissivity was determined as the ratio of the radiance from a levitated molten Cu–Co droplet measured by a spectrometer to the radiance from a blackbody calculated by Planck’s law at a given temperature, where a static magnetic field of 2.5 T to 4.5 T was applied to the levitated droplet to suppress the surface oscillation and translational motion of the sample. We found little temperature dependence of the normal spectral emissivity of molten Cu–Co alloy. Concerning the composition dependence, the emissivity decreased markedly above 80 at%Cu and reached that of pure Cu, although its dependence was low between 20 at%Cu and 80 at%Cu. In addition, this composition dependence of the emissivity of molten Cu–Co alloy can be explained well by the Drude free-electron model.

Keywords

Composition dependence Drude model Electromagnetic levitation Molten Cu–Co alloy Normal spectral emissivity Static magnetic field 

List of Symbols

e

Elementary electric charge (C)

k

Extinction coefficient (–)

m

Rest mass of an electron (kg)

\(N^{*}\)

Number of free electrons per unit volume (\(\hbox {m}^{-3}\))

n

Refractive index (–)

Greek Letters

\(\varepsilon \)

Emissivity (–)

\(\varepsilon _r, \varepsilon _i\)

Real and imaginary parts of the complex dielectric constant (–)

\(\varepsilon _0\)

Permittivity of vacuum (\(\hbox {F} {\cdot } \hbox {m}^{-1}\))

\(\rho _{el}\)

Electrical resistivity (\(\Omega ^{-1} {\cdot } \hbox {m}^{-1}\))

\(\sigma \)

Uncertainty (–)

\(\tau \)

Relaxation time of free electrons (s)

\(\omega \)

Angular frequency of the electric field (\(\hbox {rad} {\cdot } \hbox {s}^{-1}\))

\(\omega _p\)

Plasma frequency (\(\hbox {rad} {\cdot } \hbox {s}^{-1}\))

Notes

Acknowledgements

This study was supported by JSPS KAKENHI Grant No. 25289273.

References

  1. 1.
    H. Kobatake, H. Khosroabadi, H. Fukuyama, Meas. Sci. Technol. 22, 015102 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    H. Kobatake, H. Khosroabadi, H. Fukuyama, Metall. Mater. Trans. A 43, 2466 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Kurosawa, T. Inoue, Y. Baba, K.-I. Sugioka, M. Kubo, T. Tsukada, H. Fukuyama, Meas. Sci. Technol. 24, 015603 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Nakagawa, Acta Metall. Mater. 6, 704 (1958)CrossRefGoogle Scholar
  5. 5.
    X. Song, S.W. Mahon, R.F. Cochrane, B.J. Hickley, M.A. Howson, Mater. Lett. 31, 261 (1997)CrossRefGoogle Scholar
  6. 6.
    I. Yamauchi, N. Ueno, M. Shimaoka, I. Ohnaka, J. Mater. Sci. 33, 371 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    C.D. Cao, G.P. Gorler, D.M. Herlach, B. Wei, Mater. Sci. Eng. A 325, 503 (2002)CrossRefGoogle Scholar
  8. 8.
    C.D. Cao, D.M. Herlach, M. Kolbe, G.P. Gorler, B. Wei, Scr. Mater. 48, 5 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Battezzati, S. Curiotto, E. Johnson, N.H. Pryds, Mater. Sci. Eng. A 449–451, 7 (2007)CrossRefGoogle Scholar
  10. 10.
    T. Kekesi, M. Uchikoshi, K. Mimura, M. Isshiki, Metall. Mater. Trans. B 32B, 573 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Uchikoshi, H. Shibuya, J. Imaizumi, T. Kekesi, K. Mimura, M. Isshiki, Metall. Mater. Trans. B 41–42B, 448 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    K.-I. Sugioka, T. Inoue, T. Kitahara, R. Kurosawa, M. Kubo, T. Tsukada, M. Uchikoshi, H. Fukuyama, Metall. Mater. Trans. B 45, 1439 (2014)CrossRefGoogle Scholar
  13. 13.
    T. Kitahara, K. Tanada, S. Ueno, K.-I. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi, H. Fukuyama, Metall. Mater. Trans. B 46, 2706 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Fukuyama, private communicationGoogle Scholar
  15. 15.
    K. Nagata, T. Nagane, M. Susa, ISIJ Int. 37, 399 (1997)CrossRefGoogle Scholar
  16. 16.
    H. Watanabe, M. Susa, K. Nagata, Metall. Mater. Trans. B 28, 2507 (1997)CrossRefGoogle Scholar
  17. 17.
    H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)CrossRefGoogle Scholar
  18. 18.
    C. Cagran, B. Wilthan, G. Pottlacher, High Temp. High Press. 35/36, 667 (2003/2007)Google Scholar
  19. 19.
    C. Cagran, B. Wilthan, G. Pottlacher, Thermochim. Acta 445, 104 (2006)CrossRefGoogle Scholar
  20. 20.
    G. Pottlacher, J. Non Cryst. Solids 250–252, 177 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    F. Guo, T. Lu, J. Qin, H. Zheng, X. Tian, Phys. B 407, 4108 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    L. Kirkup, R.B. Frenkel, An Introduction to Uncertainty in Measurement, vol. 35 (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringTohoku UniversitySendai-shiJapan
  2. 2.Department of Mechanical Systems EngineeringToyama Prefectural UniversityImizu-shiJapan
  3. 3.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai-shiJapan

Personalised recommendations