Advertisement

Thermal Conductivity Investigation of \(\mathbf{Ca}_\mathbf{9} \mathbf{RE}(\mathbf{VO}_\mathbf{4})_\mathbf{7}\) (RE \(=\) La, Nd, Gd) and \(\mathbf{Ca}_\mathbf{10}\)M(VO\(_\mathbf{4})_\mathbf{7}\) (M \(=\) Li, Na, K) Single Crystals

  • P. A. Popov
  • S. A. Skrobov
  • A. V. Matovnikov
  • M. B. Kosmyna
  • V. M. Puzikov
  • B. P. Nazarenko
  • A. N. ShekhovtsovEmail author
  • A. Behrooz
  • W. Paszkowicz
  • I. A. Khodasevich
  • N. N. Shereshovets
  • S. V. Voitikov
  • V. A. Orlovich
Article
  • 165 Downloads

Abstract

The \(\hbox {Ca}_{9}\hbox {RE}(\hbox {VO}_{4})_{7}\) (RE \(=\) La, Nd, Gd) and \(\hbox {Ca}_{10}\hbox {M}(\hbox {VO}_{4})_{7}\) (M \(=\) Li, Na, K) single crystals have been grown by the Czochralski method. The binary vanadates are isostructural to “whitlockite” mineral (rhombohedral symmetry, R3c space group). Their thermal conductivity has been investigated in the range 50 K–300 K parallel to the c axis. For \(\hbox {Ca}_{9}\hbox {Gd}(\hbox {VO}_{4})_{7}\) crystals, the thermal conductivity has been investigated in the range 300 K–550 K also. Additionally, for the \(\hbox {Ca}_{10}\hbox {M}(\hbox {VO}_{4})_{7}\) (M \(=\) Li, Na, K) crystals the heat capacity has been studied in the temperature range 80 K–300 K. The character of the temperature dependence of thermal conductivity is close to that of glasses. The possible reasons of the observed features of the thermal conductivity have been analyzed. Raman spectra of \(\hbox {Ca}_{10}\hbox {M}(\hbox {VO}_{4})_{7}\) (M \(=\) Li, Na, K) crystals have been measured and discussed. The spectral lines were broad and similar to polycrystalline or amorphous solids. These crystals are expected to be suitable for application as efficient nonlinear optic and laser materials.

Keywords

Crystal growth Oxides Raman spectra Thermal conductivity X-ray diffraction 

References

  1. 1.
    B.I. Lazoryak, A.A. Belik, S.Y. Stefanovich, V.A. Morozov, A.P. Malakho, O.V. Baryshnikova, I.A. Leonidov, O.N. Leonidova, Dokl. Phys. Chem. 384, 144 (2002)CrossRefGoogle Scholar
  2. 2.
    P.A. Loiko, A.S. Yasukevich, A.E. Gulevich, M.P. Demesh, M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, A.A. Kornienko, E.B. Dunina, N.V. Kuleshov, K.V. Yumashev, J. Lumin. 137, 252 (2013)CrossRefGoogle Scholar
  3. 3.
    M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, Acta Phys. Pol. A 123, 305 (2013)CrossRefGoogle Scholar
  4. 4.
    M.B. Kosmyna, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, A.S. Yasukevich, N.V. Kuleshov, A.E. Gulevich, M.P. Demesh, N.V. Gusakova, Funct. Mater. 19, 552 (2012)Google Scholar
  5. 5.
    R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976)Google Scholar
  6. 6.
    M.V. Dobrotvorskaya, Y.N. Gorobets, M.B. Kosmyna, P.V. Mateichenko, B.P. Nazarenko, V.M. Puzikov, A.N. Shekhovtsov, Crystallogr. Rep. 57, 86 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Rodriguez-Carvajal, FULLPROF: a program for Rietveld refinement and pattern matching analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, 1990), p. 127Google Scholar
  8. 8.
    N.N. Sirota, P.A. Popov, I.A. Ivanov, Cryst. Res. Technol. 27, 535 (1992)CrossRefGoogle Scholar
  9. 9.
    A.A. Belik, V.A. Morozov, S.S. Khasanov, B.I. Lazoryak, Crystallogr. Rep. 42, 757 (1997)ADSGoogle Scholar
  10. 10.
    I.A. Leonidov, A.A. Fotiev, A.A. Serkalo, Russ. J. Inorg. Chem. 32, 1784 (1987). [in Russian]Google Scholar
  11. 11.
    L. Li, G. Wang, Y. Huang, L. Zhang, Z. Lin, J. Cryst. Growth 314, 331 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    P. Debye, Vortrage uber die kinetische theorie der materie and der elektrizitat (Berlin, Teubner, 1914), s. 19Google Scholar
  13. 13.
    Y.A. Zagoruiko, V.K. Komar, M.B. Kosmyna, N.O. Kovalenko, B.P. Nazarenko, A.N. Shekhovtsov, V.M. Puzikov (eds.) (ISC Press, Kharkov, 2012), p. 476 [in Russian]Google Scholar
  14. 14.
    I.A. Leonidov, A.A. Belik, O.N. Leonidova, B.I. Lazoryak, J. Russ. Inorg. Chem. 47, 305 (2002)Google Scholar
  15. 15.
    P. Debye, Annalen der Physik 39, 789 (1912)ADSCrossRefGoogle Scholar
  16. 16.
    L. Bergmann, Ultrasonics and Their Scientific and Technical Applications (Wiley, New York, 1938)Google Scholar
  17. 17.
    P.A. Popov, Thermal Conductivity of Optical Oxide Crystals (Ladomir Press, Bryansk, 2010). (in Russian)Google Scholar
  18. 18.
    A.A. Kaminskii, K. Ueda, H.J. Eichler, Y. Kuwano, H. Kouta, S.N. Bagayev, H. Chyba, J.C. Barnes, T. Murai, J. Lu, Laser Phys. 11, 1124 (2001)Google Scholar
  19. 19.
    A.I. Zagumennyi, P.A. Popov, F. Zerouk, Y.D. Zavartsev, S.A. Kutovoi, I.A. Shcherbakov, Quantum Electron. 38, 227 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. A. Popov
    • 1
  • S. A. Skrobov
    • 1
  • A. V. Matovnikov
    • 1
  • M. B. Kosmyna
    • 2
  • V. M. Puzikov
    • 2
  • B. P. Nazarenko
    • 2
  • A. N. Shekhovtsov
    • 2
    Email author
  • A. Behrooz
    • 3
  • W. Paszkowicz
    • 3
  • I. A. Khodasevich
    • 4
  • N. N. Shereshovets
    • 4
  • S. V. Voitikov
    • 4
  • V. A. Orlovich
    • 4
  1. 1.Petrovsky Bryansk State UniversityBryanskRussia
  2. 2.Institute for Single CrystalsNASUKharkovUkraine
  3. 3.Institute of PhysicsPASWarsawPoland
  4. 4.Institute of PhysicsNAS of BelarusMinskBelarus

Personalised recommendations