New Evaluation of \(T-T_{2000}\) from 0.02 K to 1 K by Independent Thermodynamic Methods

  • J. Engert
  • A. Kirste
  • A. Shibahara
  • A. Casey
  • L. V. Levitin
  • J. Saunders
  • O. Hahtela
  • A. Kemppinen
  • E. Mykkänen
  • M. Prunnila
  • D. Gunnarsson
  • L. Roschier
  • M. Meschke
  • J. Pekola
TEMPMEKO 2016
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

This paper reports on the results achieved within the European Metrology Research Programme project “Implementing the new kelvin—InK” in the low-temperature range below 1 K. One of the main objectives of the InK project was the determination of new thermodynamic temperature data for comparison with the Provisional Low Temperature Scale 2000 (PLTS-2000), to provide reliable \(T-T_{2000}\) values. To this end, we have investigated three different types of primary thermometers: the current sensing noise thermometer, the primary magnetic field fluctuation thermometer and the Coulomb blockade thermometer. Based on a thorough investigation of the thermometers, detailed uncertainty budgets were established for the measurement of thermodynamic temperatures. Direct comparison measurements between all thermometers demonstrate the agreement of temperature measurements within less than 1 %. Our new \(T-T_{2000}\) data confirm the correctness of the PLTS-2000 in the temperature range from 20 mK up to about 700 mK with relative combined standard uncertainties better than 0.62 %.

Keywords

Mise en pratique of the kelvin (MeP-K) PLTS-2000 Primary thermometry Temperature scale 

References

  1. 1.
    J. Fischer, J. Ullrich, The new system of units. Nat. Phys. 12, 4–6 (2016)CrossRefGoogle Scholar
  2. 2.
    B. Fellmuth et al., The kelvin redefinition and its mise en pratique. Philos. Trans. R. Soc. A 374, 20150037 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90). Metrologia 27, 3–10 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    Comité International des Poids et Mesures (CIPM), The Provisional Low Temperature Scale from 0.9 mK to 1 K, PLTS-2000, Appendix to Recommendation C1 (2000). see http://www.bipm.org/utils/en/pdf/PLTS-2000 and http://www.bipm.org/en/committees/cc/cct/guide-plts2000.html
  5. 5.
    G. Machin, J. Engert, R.M. Gavioso, M. Sadli, E.R. Woolliams, The Euramet Metrology Research Programme project implementing the new kelvin (InK). Int. J. Thermophys. 35, 405 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    R.L. Rusby, M. Durieux, A.L. Reesink, R.P. Hudson, G. Schuster, M. Kühne, W.E. Fogle, R.J. Soulen, E.D. Adams, The Provisional Low Temperature Scale from 0.9 mK to 1 K, PLTS-2000. J. Low Temp. Phys. 126(1/2), 633–642 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    A. Shibahara, O. Hahtela, J. Engert, H. van der Vliet, L.V. Levitin, A. Casey, C.P. Lusher, J. Saunders, D. Drung, Th Schurig, Primary current-sensing noise thermometry in the millikelvin regime. Philos. Trans R. Soc. A 374, 20150054 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    A. Kirste, J. Engert, A SQUID-based primary noise thermometer for low temperature metrology. Philos. Trans. R. Soc. A 374, 20150050 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    O. Hahtela, et al., Traceable Coulomb blockade thermometry (in preparation)Google Scholar
  10. 10.
    A. Kirste, M. Regin, J. Engert, D. Drung, Th Schurig, A calculable and correlation-based magnetic field fluctuation thermometer. J. Phys.: Conf. Ser. 568, 032012 (2014)ADSGoogle Scholar
  11. 11.
    J. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen, Thermometry by arrays of tunnel junctions. Phys. Rev. Lett. 73, 2903 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    M. Meschke, J.P. Pekola, F. Gay, R.E. Rapp, H. Godfrin, Electron thermalization in metallic islands probed by Coulomb blockade thermometry. J. Low Temp. Phys. 134(5/6), 1119 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    D.I. Bradley, R.E. George, D. Gunnarson, R.P. Haley, H. Heikkinen, YuA Pashkin, J. Penttilä, J.R. Prance, M. Prunnila, L. Roschier, M. Sarsby, Nanoelectronic primary thermometry below 4 mK. Nat. Commun. 7, 10455 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M. Prunnila, M. Meschke, D. Gunnarson, S. Enouz-Vedrenne, J.M. Kivioja, J.P. Pekola, Ex situ tunnel junction process technique characterized by Coulomb blockade thermometry. J. Vac. Sci. Technol. B28(5), 1026 (2010)CrossRefGoogle Scholar
  15. 15.
    O. Hahtela, M. Meschke, A. Savin, D. Gunnarson, M. Prunnila, J.S. Penttilä, L. Roschier, M. Heinonen, A. Manninen, J.P. Pekola, Investigation of uncertainty components in Coulomb blockade thermometry. AIP Conf. Proc. 1552, 142 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Hightech Development Leiden, P.O. Box 691, 2300 AR Leiden, The Netherlands. https://hdleiden.home.xs4all.nl/srd1000/
  17. 17.
    Magnicon GmbH, Barkhausenweg 11, 22339 Hamburg, Germany. http://www.magnicon.com
  18. 18.
    A.B. Zorin, The thermocoax cable as the microwave frequency filter for single electron circuits. Rev. Sci. Instrum. 66, 4296 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    R. Kacker, R. Datla, A. Parr, Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide. Metrologia 39, 279 (2002)ADSCrossRefGoogle Scholar
  20. 20.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Engert
    • 1
  • A. Kirste
    • 1
  • A. Shibahara
    • 2
  • A. Casey
    • 2
  • L. V. Levitin
    • 2
  • J. Saunders
    • 2
  • O. Hahtela
    • 3
  • A. Kemppinen
    • 3
  • E. Mykkänen
    • 3
  • M. Prunnila
    • 3
  • D. Gunnarsson
    • 3
    • 5
  • L. Roschier
    • 4
    • 5
  • M. Meschke
    • 6
  • J. Pekola
    • 6
  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany
  2. 2.Department of PhysicsRoyal Holloway University of LondonEgham SurreyUK
  3. 3.VTT Technical Research Centre of FinlandEspooFinland
  4. 4.Aivon OyHelsinkiFinland
  5. 5.BlueFors Cryogenics Oy LtdHelsinkiFinland
  6. 6.Low Temperature Laboratory, Department of Applied PhysicsAalto University School of ScienceAaltoFinland

Personalised recommendations