Advertisement

Measurement of the Inhomogeneity in Type B and Land–Jewell Noble-Metal Thermocouples

  • E. S. WebsterEmail author
  • A. Greenen
  • J. Pearce
Article

Abstract

Inhomogeneity is the largest contributor to uncertainty in temperature measurements made with thermocouples, and the knowledge of inhomogeneity is essential if low-uncertainty measurements are required. Inhomogeneity is a particular problem for long-term applications at temperatures near or above 1500 \(^{\circ }\hbox {C}\), where pairs of alloyed noble-metal thermocouples must be used and the alloy components and potential contaminants become very mobile and cause large deviations in the Seebeck coefficient. While changes in inhomogeneity are a known and well-studied problem in noble-metal alloys at temperatures below 1100 \(^{\circ }\hbox {C}\), the effects are not well quantified at higher temperatures. This paper reports the first detailed measurements of inhomogeneity in a number of Type B and Land–Jewell thermocouples exposed to either short-term calibration up to 1600 \(^{\circ }\hbox {C}\) or long-term in situ measurements for a period of approximately 3000 h at 1600 \(^{\circ }\hbox {C}\). The inhomogeneity is measured in a high-resolution scanner operating over the range from 600 \(^{\circ }\hbox {C}\) to 900 \(^{\circ }\hbox {C}\). The results show that drifts of between 0.2 % and 0.6 % can be expected for reversible crystallographic and oxidation effects, whereas drift caused by irreversible contamination effects can be expected to be between 0.6 % and 1.1 %. It is also shown that the deviations in emfs caused by irreversible homogeneities in these thermocouples scale approximately linearly with temperature. This scalability allows uncertainties assessed at one temperature, to be extrapolated to other temperatures. Additionally it is shown that a preconditioning anneal at 1100 \(^{\circ }\hbox {C}\) should be applied both before and after calibration to remove undesirable crystallographic and rhodium-oxidation effects.

Keywords

Homogeneity scanner Inhomogeneity Land–Jewell Noble-metal Thermocouples Type B Uncertainty 

Notes

Acknowledgments

The author wishes to acknowledge the financial assistance and resources provided by the NPL (UK) in completing this work, the work of R. Mason (MSL, NZ) in the design of the high-temperature scanner, and invaluable discussions with D. R. White (MSL, NZ).

References

  1. 1.
    J.V. Pearce, H. Ogura, M. Izuchi, G. Machin, Metrologia 46, 743–749 (2009)CrossRefGoogle Scholar
  2. 2.
    H. Ogura, M. Izuchi, M. Arai, Int. J. Thermophys. 29, 210–221 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J.V. Pearce, C.J. Elliott, A. Greenen, D. Campo, J.M. Martin, C. Garcia Izquierdo, P. Pavlasek, G. Nemecek, T. Deuze, G. Machin, Meas. Sci. Technol. 26, 10 (2015)CrossRefGoogle Scholar
  4. 4.
    E.S. Webster, R.S. Mason, A. Greenen, J. Pearce, Int. J. Thermophys. 36, 2922–2939 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    E.S. Webster, Int. J. Thermophys. 36, 1909–1924 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    P. Kinzie, Thermocouple Temperature Measurements, 1st edn. (Wiley, New York, 1973)Google Scholar
  7. 7.
    A.G. Metcalfe, Br. J. Appl. Phys. 1, 256–258 (1950)ADSCrossRefGoogle Scholar
  8. 8.
    E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control, Science and Industry, vol. 5, part 2, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 953–975Google Scholar
  9. 9.
    EURAMET, Calibration of thermocouples—cg-8 ver.2.1 (EURAMET, 2011)Google Scholar
  10. 10.
    R.E. Bentley, Theory and Practice of Thermoelectric Thermometry, 1st edn. (Springer, Singapore, 1998)Google Scholar
  11. 11.
    E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control, Science and Industry, vol. 4, part 3, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1543–1560Google Scholar
  12. 12.
    C.P. Flynn, Phys. Rev. 171, 682–698 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    R.C. Bradley, Phys. Rev. 117, 1204–1207 (1960)ADSCrossRefGoogle Scholar
  14. 14.
    M.S.A. Karunaratne, R.C. Reed, Acta Materialia 51, 2905–2919 (2003)CrossRefGoogle Scholar
  15. 15.
    T. Li, E.A. Marquis, P.A.J. Bagot, S.C. Tsang, G.D.W. Smith, Catal. Today 175, 552–557 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Sojka, V. Vodárek, J. Sobotka, M. Dubský, J. Less Common Met. 171, 41–50 (1991)CrossRefGoogle Scholar
  17. 17.
    M. Rubel, M. Pszonicka, M.F. Ebel, A. Jablonski, W. Palczewska, J. Less Common Met. 125, 7–24 (1986)CrossRefGoogle Scholar
  18. 18.
    H. Jehn, J. Less Common Met. 100, 321–339 (1984)CrossRefGoogle Scholar
  19. 19.
    C.A. Krier, R.I. Jaffee, J. Less Common Met. 5, 411–431 (1963)CrossRefGoogle Scholar
  20. 20.
    R.E. Bentley, Int. J. Thermophys. 6, 83–99 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    E.D. Zysk, in Temperature, Its Measurement and Control Science and Industry, vol. 3, part 2, ed. by C.M. Herzfeld (Instrument Society of America, Pittsburgh, 1962), pp. 135–155Google Scholar
  22. 22.
    A. Nakano, J. Bennett, J. Nakano, Corros. Sci. 103, 30–41 (2016)CrossRefGoogle Scholar
  23. 23.
    M.S. Rana, K. Ravindranath, N. Tanoli, Eng. Failure Anal. 55, 79–86 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Jahan, M. Ballico, Int. J. Thermophys. 28, 1832–1842 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    F. Jahan, M. Ballico, Int. J. Thermophys. 31, 1544–1553 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    R.E. Bentley, Measurement 23, 35–46 (1998)CrossRefGoogle Scholar
  27. 27.
    K.T. Jacob, S. Priya, Y. Waseda, Bull. Mater. Sci. 21, 99–103 (1998)CrossRefGoogle Scholar
  28. 28.
    F. Edler, P. Ederer, in Temperature, Its Measurement and Control in Science and Industry, vol. 8, part 1, ed. by C.W. Meyer (AIP, Melville, 2013), pp. 532–537Google Scholar
  29. 29.
    E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. 36, 444–466 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    G. Machin, K. Anhalt, F. Edler, J. Pearce, M. Sadli, R. Strnad, E. Vuelban, 16th International Congress of Metrology (EDP Sciences, 2013)Google Scholar
  31. 31.
    E.S. Webster, D.R. White, Metrologia 52, 130–144 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    ASTM, Standard Guide for Temperature Electromotive Force (EMF) Tables for Non-Letter Designated Thermocouple Combinations, vol. 1751 (ASTM, 2000)Google Scholar
  33. 33.
    G.W. Burns, M.G. Scroger, G.F. Strouse, M.C. Croarkin, W.F. Guthrie, Temperature-electromotive Force Reference Functions And Tables For The Letter-designated Thermocouple Types Based On The ITS-90, National Institute of Standards and Technology (NIST) Monograph 175 (U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, 1993)Google Scholar
  34. 34.
    E.S. Webster, F. Edler, Submitted to TEMPMEKO (2016)Google Scholar
  35. 35.
    J.C. Chaston, Platin. Met. Rev. 10, 91–93 (1966)Google Scholar
  36. 36.
    A. Roy, J. Ghose, Mater. Res. Bull. 33, 547–551 (1998)CrossRefGoogle Scholar
  37. 37.
    H. Leiva, R. Kershaw, K. Dwight, A. Wold, Mater. Res. Bull. 17, 1539–1544 (1982)CrossRefGoogle Scholar
  38. 38.
    G.W. Burns, J.S. Gallagher, Precision Measurement and Calibration: Selected NBS Papers on Temperature, vol. 2, pp. 290–306 (1968)Google Scholar
  39. 39.
    R.E. Bedford, Rev. Sci. Instrum. 36, 1571–1580 (1965)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Measurement Standards LaboratoryLower HuttNew Zealand
  2. 2.National Physical LaboratoryTeddingtonUK

Personalised recommendations