Equation of State for the Thermodynamic Properties of 1,1,2,2,3-Pentafluoropropane (R-245ca)



An equation of state for the calculation of the thermodynamic properties of 1,1,2,2,3-pentafluoropropane (R-245ca), which is a hydrofluorocarbon refrigerant, is presented. The equation of state (EOS) is expressed in terms of the Helmholtz energy as a function of temperature and density, and can calculate all thermodynamic properties through the use of derivatives of the Helmholtz energy. The equation is valid for all liquid, vapor, and supercritical states of the fluid, and is valid from the triple point to 450 K, with pressures up to 10 MPa. Comparisons to experimental data are given to verify the stated uncertainties in the EOS. The estimated uncertainty for density is 0.1 % in the liquid phase between 243 K and 373 K with pressures up to 6.5 MPa; the uncertainties increase outside this range, and are unknown. The uncertainty in vapor-phase speed of sound is 0.1 %. The uncertainty in vapor pressure is 0.2 % between 270 K and 393 K. The uncertainties in other regions and properties are unknown due to a lack of experimental data.


Equation of state Helmholtz energy R-245ca Thermodynamic properties 1\({, }\)1\({, }\)2\({, }\)2\({, }\)3-Pentafluoropropane 


  1. 1.
    Intergovernmental Panel on Climate Change, Climate Change 2007: Working Group I: The Physical Science Basis, http://www.ipcc.ch/publications_and_data/ar4/wg1/en/errataserrata-errata.html
  2. 2.
    A.L. Beyerlein, D.D. DesMarteau, S.H. Hwang, N.D. Smith, P.A. Joyner, ASHRAE Trans. 99, 368 (1993)Google Scholar
  3. 3.
    D.R. Defibaugh, K.A. Gillis, M.R. Moldover, J.W. Schmidt, L.A. Weber, Int. J. Refrig. 19, 285 (1996)CrossRefGoogle Scholar
  4. 4.
    G. Di Nicola, C. Brandoni, C. Di Nicola, G. Giuliani, J. Therm. Anal. Calorim. 108, 627 (2012)CrossRefGoogle Scholar
  5. 5.
    G. Di Nicola, G. Passerini, J. Chem. Eng. Data 47, 882 (2002)CrossRefGoogle Scholar
  6. 6.
    K.A. Gillis, Int. J. Thermophys. 18, 73 (1997)CrossRefADSGoogle Scholar
  7. 7.
    S.-H. Hwang, D.D. DesMarteau, A.L. Beyerlein, N.D. Smith, P. Joyner, J. Therm. Anal. 38, 2515 (1992)CrossRefGoogle Scholar
  8. 8.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2013)Google Scholar
  9. 9.
    E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54, 3141 (2009)CrossRefGoogle Scholar
  10. 10.
    M.L. Huber, J.F. Ely, Int. J. Refrig. 17, 18 (1994)CrossRefGoogle Scholar
  11. 11.
    E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34, 69 (2005)CrossRefADSGoogle Scholar
  12. 12.
    R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996)CrossRefADSGoogle Scholar
  13. 13.
    G. Venkatarathnam, L.R. Oellrich, Fluid Phase Equilib. 301, 225 (2011)CrossRefGoogle Scholar
  14. 14.
    E.W. Lemmon, M.O. McLinden, U. Overhoff, W. Wagner, A reference equation of state for propylene for temperatures from the melting line to 575 K and pressures up to 1000 MPa, to be submitted to J. Phys. Chem. Ref. Data (2016)Google Scholar
  15. 15.
    M. Thol, E.W. Lemmon, Equation of State for the Thermodynamic Properties of trans-1,3,3,3-Tetrafluoropropene [R-1234ze(E)], Int. J. Thermophys. (2016). doi:10.1007/s10765-016-2040-6

Copyright information

© Springer Science+Business Media New York (Outside the USA) 2016

Authors and Affiliations

  1. 1.Honeywell Integrated Technology (China) Co. Ltd.ShanghaiChina
  2. 2.Applied Chemicals and Materials DivisionNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations