Thermal Imaging and Conoscopic Studies of Working Acousto-optical Devices on the Base of Paratellurite

  • Sergey Tretiakov
  • Alexander Kolesnikov
  • Ivan Kaplunov
  • Rostislav Grechishkin
  • Konstantin YushkovEmail author
  • Ekaterina Shmeleva


In the present work we performed a study of the temperature field distribution in acousto-optic elements using infrared thermal vision instruments and compared the results with those obtained by conoscopic observations made by means of custom-built laser interferometer. The latter technique is especially suited for the sensitive detection of optical anomalies arising due to temperature-induced variations of ordinary and extraordinary refraction indices inside the material. Collation of the thermal and optical patterns provided a possibility of attributing the occurrence of anomalous biaxiality to the effect of thermal stresses developing in the acousto-optic elements during their operation.


Acousto-optics Conoscopy Paratellurite Temperature fields  



The work was carried out with financial support in part from the Federal Target Program “Research and Development in the Priority Directions of Scientific Engineering Complex of Russia for 2014-2020” (Agreement 14.574.21.0113) and in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (Project K1-2014-008).


  1. 1.
    J. Ohmachi, N. Uchida, Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO\(_2\) single crystals. J. Appl. Phys. 41, 2307 (1970). doi: 10.1063/1.1659223 CrossRefADSGoogle Scholar
  2. 2.
    V.I. Balakshy, V.B. Voloshinov, V.A. Karasev, V.Y. Molchanov, V. Semenkov, Compensation of thermal effects in acousto-optic deflector. Proc. SPIE 2713, 164 (1996). doi: 10.1117/12.234185 CrossRefADSGoogle Scholar
  3. 3.
    B.B.J. Linde, Acoustic spectroscopy, experimental methods and research. Mol. Quant. Acoust. 27, 169 (2006)Google Scholar
  4. 4.
    V.B. Voloshinov, K.B. Yushkov, B.B.J. Linde, Improvement in performance of a TeO\(_2\) acousto-optic imaging spectrometer. J. Opt. A Pure Appl. Opt. 9, 341 (2007). doi: 10.1088/1464-4258/9/4/006 CrossRefADSGoogle Scholar
  5. 5.
    P. Maák, T. Takács, A. Barócsi, E. Kollár, V. Szekely, P. Richter, Thermal behavior of acousto-optic devices: effects of ultrasound absorption and transducer losses. Ultrasonics 51, 441 (2011). doi: 10.1016/j.ultras.2010.11.010 CrossRefGoogle Scholar
  6. 6.
    V.Y. Molchanov, K.B. Yushkov, Acousto-optics for femtosecond laser systems. AIP Conf. Proc. 1433, 72 (2012). doi: 10.1063/1.3703149 CrossRefADSGoogle Scholar
  7. 7.
    V. Leroi, J.-P. Bibring, M. Berthe, Micromega/IR: design and status of a near-infrared spectral microscope for in situ analysis of Mars samples. Planet. Space Sci. 57, 1068 (2009)CrossRefADSGoogle Scholar
  8. 8.
    S.N. Mantsevich, O.I. Korablev, Y.K. Kalinnikov, A.Y. Ivanov, A.V. Kiselev, Wide-aperture TeO\(_2\) AOTF at low temperatures: operation and survival. Ultrasonics 59, 50 (2015). doi: 10.1016/j.ultras.2015.01.011
  9. 9.
    S.N. Mantsevich, O.I. Korablev, Y.K. Kalinnikov, A.Y. Ivanov, A.V. Kiselev, Examination of temperature influence on wide-angle paratellurite crystal acousto-optic filters operation. Acta Phys. Pol. A 127, 43 (2015). doi: 10.12693/APhysPolA.127.43 CrossRefGoogle Scholar
  10. 10.
    S.A. Tretiakov, R.M. Grechishkin, A.I. Kolesnikov, I.A. Kaplunov, K.B. Yushkov, V. Molchanov, B.B.J. Linde, Characterization of temperature field distribution in large-size paratellurite crystals applied in acousto-optic devices. Acta Phys. Pol. A 127, 72 (2015). doi: 10.12693/APhysPolA.127.72 CrossRefGoogle Scholar
  11. 11.
    V.Y. Molchanov, O.Y. Makarov, Phenomenological method for broadband electrical matching of acousto-optical device piezotransducers. Opt. Eng. 38, 1127 (1999). doi: 10.1117/1.602162 CrossRefADSGoogle Scholar
  12. 12.
    A.I. Kolesnikov, S.A. Tretiakov, R.M. Grechishkin, K.A. Morozova, K.B. Yushkov, V.Y. Molchanov, B.B.J. Linde, A study of optical uniformity of lithium niobate and paratellurite crystals by the method of conoscopy. Acta Phys. Pol. A 127, 84 (2015). doi: 10.12693/APhysPolA.127.84 CrossRefGoogle Scholar
  13. 13.
    A.I. Kolesnikov, R.M. Grechishkin, O. Malyshkina, Y. Malyshkin, J. Dec, T. Łukasiewicz, A. Ivanova, Conoscopic study of strontium-barium niobate single crystals. IOP Conf. Ser. Mat. Sci. Eng. 49, 012010 (2013). doi: 10.1088/1757-899X/49/1/012010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sergey Tretiakov
    • 1
  • Alexander Kolesnikov
    • 1
    • 2
  • Ivan Kaplunov
    • 1
  • Rostislav Grechishkin
    • 1
    • 2
  • Konstantin Yushkov
    • 2
    Email author
  • Ekaterina Shmeleva
    • 1
  1. 1.Tver State UniversityTverRussia
  2. 2.National University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations