Advertisement

International Journal of Thermophysics

, Volume 36, Issue 10–11, pp 3169–3185 | Cite as

Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry

  • T. Kugler
  • M. H. Rausch
  • A. P. FröbaEmail author
Article

Abstract

The paper reports on binary diffusion coefficient data for the gaseous systems argon–neon, krypton–helium, ammonia–helium, nitrous oxide–nitrogen, and propane–helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon–helium, krypton–argon, krypton–neon, xenon–helium, xenon–krypton, nitrous oxide–carbon dioxide, and propane–carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.

Keywords

Binary diffusion coefficient Holographic interferometry Loschmidt cell Molecular gases Noble gases Pressure dependence Temperature dependence 

List of Symbols

\(A_{\mathrm{R}1}\)

First refractivity virial coefficient of component 1 (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(A_{\mathrm{R}2}\)

First refractivity virial coefficient of component 2 (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{11}\)

Second pressure virial coefficient of component 1 (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{22}\)

Second pressure virial coefficient of component 2 (\({\hbox {m}}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{12}\)

Mixed second pressure virial coefficient (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{\mathrm{mix}}\)

Second pressure virial coefficient of the mixture (\(\hbox {m}^{3}{\cdot }\hbox {mol}^{-1}\))

\(B_{\mathrm{R}11}\)

Second refractivity virial coefficient of component 1 (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(B_{\mathrm{R}22}\)

Second refractivity virial coefficient of component 2 (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(B_{\mathrm{R}12}\)

Mixed second refractivity virial coefficient (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{111}\)

Third pressure virial coefficient of component 1 (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{112}\)

Mixed third pressure virial coefficient (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{122}\)

Mixed third pressure virial coefficient (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{222}\)

Third pressure virial coefficient of component 2 (\({\hbox {m}}^{6}{\cdot }\hbox {mol}^{-2}\))

\(C_{\mathrm{mix}}\)

Third pressure virial coefficient of the mixture (\(\hbox {m}^{6}{\cdot }\hbox {mol}^{-2}\))

\(D_{12}\)

Binary diffusion coefficient (\(\hbox {m}^{2}{\cdot }\hbox {s}^{-1}\))

\(k_{\mathrm{mix}}\)

Order of interference fringe

\(\Delta L_{\mathrm{opt}}\)

Optical path length difference (m)

L

Height (m)

l

Depth (m)

\(\Delta n\)

Refractive index difference

\(n_{0}\)

Refractive index of pure component

\(n_{1}\)

Amount of moles of component 1 (mol)

\(n_{1,0}\)

Refractive index of component 1 prior to diffusion

\(n_{2,0}\)

Refractive index of component 2 prior to diffusion

\(n_{\mathrm{mix}}\)

Refractive index of the mixture

p

Pressure (Pa)

s

Width (m)

T

Temperature (K)

t

Time (s)

\(V_{1}\)

Volume of the lower half-cell (\(\hbox {m}^{3}\))

\(V_{\mathrm{u}}\)

Volume of the upper half-cell (\(\hbox {m}^{3}\))

\(x_{1}\)

Mole fraction of component 1

z

Local coordinate (m)

\(\lambda \)

Wavelength (m)

\(\rho _{1}\)

Partial molar density of component 1 (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\rho _{2}\)

Partial molar density of component 2 (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\rho _{1}^\infty \)

Molar density of component 1 at the end of the diffusion process (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\rho _{\mathrm{mix}}\)

Molar density of the mixture (\(\hbox {mol}{\cdot }\hbox {m}^{-3}\))

\(\tau \)

Characteristic diffusion time (s)

Notes

Acknowledgments

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) as part of the German Initiative for Excellence and via the project “diffusion coefficient” (Grants FR 1709/10-1 and FR 1709/10-2).

References

  1. 1.
    D. Buttig, Dr.-Ing. Thesis, University of Rostock, Rostock (2010)Google Scholar
  2. 2.
    W.J. Massman, Atmos. Environ. 32, 1111 (1998)CrossRefADSGoogle Scholar
  3. 3.
    C. Pizarro, O. Suárez-Iglesias, I. Medina, J.L. Bueno, J. Supercrit. Fluids 48, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    W.S. McGivern, J.A. Manion, Combust. Flame 159, 3021 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Kerl, M. Jescheck, Z. Phys. Chem. Neue Folge 97, 127 (1975)Google Scholar
  6. 6.
    J. Baranski, Dr.-Ing. Thesis, University of Rostock, Rostock (2002)Google Scholar
  7. 7.
    D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 1 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Kugler, B. Jäger, M.H. Rausch, E. Bich, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013)CrossRefADSGoogle Scholar
  9. 9.
    T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. (2015). doi: 10.1007/s10765-015-1966-4
  10. 10.
    T. Kugler, Dr.-Ing. Thesis, University of Erlangen-Nuremberg, Erlangen (2015)Google Scholar
  11. 11.
    H. Becker, U. Grigull, Optik 35, 223 (1972)Google Scholar
  12. 12.
    H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Siaman, J. Chem. Phys. 98, 2308 (1993)CrossRefADSGoogle Scholar
  13. 13.
    A.D. Buckingham, C. Graham, Proc. R. Soc. Lond. A 336, 275 (1974)CrossRefADSGoogle Scholar
  14. 14.
    E. Bich, R. Hellmann, B. Jäger, Personal Communication to T. Kugler About Binary Diffusion Coefficients of Gases (University of Rostock, Rostock, 2010–2014)Google Scholar
  15. 15.
    J.H. Dymond, K.N. Marsh, R.C. Wilhoit, K.C. Wong, Group IV: Physical Chemistry (Springer Publishing Company, Berlin, 2002)Google Scholar
  16. 16.
    J.H. Dymond, E.B. Smith, The Virial Coefficients of Pure Gases and Mixtures (Oxford University Press, Oxford, 1980)Google Scholar
  17. 17.
    J.H. Smith, E.B. Dymond, The Virial Coefficients of Gases (Clarendon Press, Oxford, 1969)Google Scholar
  18. 18.
    J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1956)zbMATHGoogle Scholar
  19. 19.
    T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)CrossRefADSGoogle Scholar
  20. 20.
    G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976)CrossRefADSGoogle Scholar
  21. 21.
    P.S. Arora, H.L. Robjohns, P.J. Dunlop, Physica A 95, 561 (1979)CrossRefADSGoogle Scholar
  22. 22.
    E.U. Schlünder, Einführung in die Stoffübertragung, 2nd edn. (Vieweg, Braunschweig, 1996)Google Scholar
  23. 23.
    A. Yıldız, M.A. Ersöz, Energy 60, 407 (2013)CrossRefGoogle Scholar
  24. 24.
    I.B. Srivastava, Ind. J. Phys. 36, 193 (1962)Google Scholar
  25. 25.
    B.A. Ivakin, P.E. Suetin, Sov. Phys. Tech. Phys. 8, 748 (1964)Google Scholar
  26. 26.
    P.J. Dunlop, C.M. Bignell, Ber. Bunsen-Ges. Phys. Chem. 91, 817 (1987)CrossRefGoogle Scholar
  27. 27.
    J. Kestin, S.T. Ro, Ber. Bunsen-Ges. Phys. Chem. 86, 948 (1982)CrossRefGoogle Scholar
  28. 28.
    P.J. Dunlop, C.M. Bignell, J. Chem. Phys. 93, 2701 (1990)CrossRefADSGoogle Scholar
  29. 29.
    T.N. Bell, I.R. Shankland, P.J. Dunlop, Chem. Phys. Lett. 45, 445 (1977)CrossRefADSGoogle Scholar
  30. 30.
    S. Weissmann, J. Chem. Phys. 40, 3397 (1964)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.Institute of Engineering Thermodynamics (LTT)Friedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations