International Journal of Thermophysics

, Volume 36, Issue 10–11, pp 3083–3105 | Cite as

A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

  • Marc J. AssaelEmail author
  • Konstantinos D. Antoniadis
  • Ifigeneia N. Metaxa
  • Sofia K. Mylona
  • John-Alexander M. Assael
  • Jiangtao Wu
  • Miaomiao Hu


A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2\(\,\hbox { W}{\cdot }\mathrm{m}^{-1}{\cdot }\hbox {K}^{-1}\) to \(4\,\hbox { W}{\cdot }\mathrm{m}^{-1}{\cdot }\hbox {K}^{-1}\) is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to \(\times \)120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.


Bayesian optimization Transient hot-wire Thermal conductivity Solids Finite element method Low uncertainty 



The Laboratory of Thermophysical Properties & Environmental Processes and Tessera Multimedia, gratefully acknowledge financial support under the Operational Program “Competitiveness and Entrepreneurship” (EPAN II), Action: Greece - China Bilateral R&TD Cooperation 2012 to 2014 (Project number 12CHN68). The authors would also like to thank Dr. Vassili Efopoulos and Ms. Konstantina Marini, from Tessera Multimedia for their help in the administration of the whole project, and Mr G. Matziaroglou for his participation in the test runs.


  1. 1.
    M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, Transient methods for thermal conductivity, in Experimental Thermodynamics, vol. III: Measurement of the Transport Properties of Fluids, ed. by A. Nagashima, G.V. Sengers, W.A. Wakeham (Blackwell Scientific Publications, 1991), pp. 161–195Google Scholar
  2. 2.
    J.T. Wu, M.J. Assael, K.D. Antoniadis, 5.1. History of the Transient Hot Wire, in Experimental Thermodynamics, Volume IX: Advances in Transport Properties of Fluids, ed. by M.J. Assael, A.R.H. Goodwin, V. Vesovic, W.A. Wakeham (RSC Press, London, 2014), pp. 132–138CrossRefGoogle Scholar
  3. 3.
    M.J. Assael, K.D. Antoniadis, W.A. Wakeham, Int. J. Thermophys. 31, 1051 (2010)CrossRefADSGoogle Scholar
  4. 4.
    Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique), ASTM Designation C1113-99 (American Society for Testing and Materials, Philadelphia, 1999)Google Scholar
  5. 5.
    European Committee for Standardization, Methods for Testing Dense Shaped Refractory Products—Determination of Thermal Conductivity by the Hot-Wire (Parallel) Method, EN 993-15 (1998)Google Scholar
  6. 6.
    Refractory Materials. Determination of Thermal Conductivity. Part 2: Hot-Wire Methods (Parallel), ISO 8894-2 (International Organization for Standardization, Geneva, 2007)Google Scholar
  7. 7.
    K.D. Antoniadis, M.J. Assael, C.A. Tsiglifisi, S.K. Mylona, Int. J. Thermophys. 33, 2274 (2012)CrossRefADSGoogle Scholar
  8. 8.
    M.J. Assael, K.D. Antoniadis, K.E. Kakosimos, I.N. Metaxa, Int. J. Thermophys. 29, 445 (2008)CrossRefADSGoogle Scholar
  9. 9.
    M.J. Assael, K.D. Antoniadis, I.N. Metaxa, D. Tzetzis, J. Chem. Eng. Data 54, 2365 (2009)CrossRefGoogle Scholar
  10. 10.
    M.J. Assael, K.D. Antoniadis, D. Tzetzis, Comput. Sci. Technol. 68, 3178 (2008)CrossRefGoogle Scholar
  11. 11.
    M.J. Assael, K.D. Antoniadis, J. Wu, Int. J. Thermophys. 29, 1257 (2008)CrossRefADSGoogle Scholar
  12. 12.
    M.J. Assael, S. Botsios, K. Gialou, I.N. Metaxa, Int. J. Thermophys. 26, 1595 (2005)CrossRefADSGoogle Scholar
  13. 13.
    M.J. Assael, M. Dix, K. Gialou, L. Vozar, W.A. Wakeham, Int. J. Thermophys. 23, 615 (2002)CrossRefGoogle Scholar
  14. 14.
    M.J. Assael, K. Gialou, Int. J. Thermophys. 24, 1145 (2003)CrossRefGoogle Scholar
  15. 15.
    M.J. Assael, K. Gialou, Int. J. Thermophys. 24, 667 (2003)CrossRefGoogle Scholar
  16. 16.
    M.J. Assael, K. Gialou, K. Kakosimos, I. Metaxa, Int. J. Thermophys. 25, 397 (2004)CrossRefADSGoogle Scholar
  17. 17.
    J.W. Haarman, Physica 52, 605 (1971)CrossRefADSGoogle Scholar
  18. 18.
    J. Kestin, W.A. Wakeham, Physica 92A, 102 (1978)CrossRefADSGoogle Scholar
  19. 19.
    J.J. De Groot, J. Kestin, H. Sookiazian, Physica 75, 454 (1974)CrossRefADSGoogle Scholar
  20. 20.
    C.A. Nieto De Castro, J.C.G. Calado, W.A. Wakeham, M. Dix, J. Phys. B 9, 1073 (1976)Google Scholar
  21. 21.
    J. Kestin, R. Paul, A.A. Clifford, W.A. Wakeham, Physica A 100, 349 (1980)CrossRefADSGoogle Scholar
  22. 22.
    M.J. Assael, M. Dix, A. Lucas, W.A. Wakeham, J. Chem. Soc., Faraday Trans. 1 77, 439 (1981)CrossRefGoogle Scholar
  23. 23.
    G.C. Maitland, M. Mustafa, M. Ross, R.D. Trengove, W.A. Wakeham, M. Zalaf, Int. J. Thermophys. 7, 245 (1986)CrossRefADSGoogle Scholar
  24. 24.
    M.J. Assael, E. Charitidou, G.P. Georgiadis, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 92, 627 (1988)CrossRefGoogle Scholar
  25. 25.
    C. Geuzaine, J.-F. Remacle, Int. J. Numer. Methods Eng. 79, 1309 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Rebay, J. Comput. Phys. 106, 125 (1993)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    J.E. Guyer, D. Wheeler, J.A. Warren, Comput. Sci. Eng. 11, 6 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian Optimization of Machine Learning Algorithms in Proceedings of NIPS, Lake Tahoe (2012)Google Scholar
  29. 29.
    J. Snoek, K. Swersky, R. Zemel, R.P. Adams, in NIPS Workshop on Bayesian Optimization in Theory and Practice, Lake Tahoe (2013)Google Scholar
  30. 30.
    Z. Wang, N. deFreitas, University of Oxford,arXiv:1406.7758 (2014)
  31. 31.
    E. Brochu, V.M. Cora, N. de Freitas, in A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning, Department of Computer Science, University of British Columbia, UBC TR-2009-23 (2009)Google Scholar
  32. 32.
    J.-A.M. Assael, Z. Wang, N. de Freitas, Heteroscedastic Treed Bayesian Optimisation in NIPS Workshop on Bayesian Optimisation, Montreal (2014)Google Scholar
  33. 33.
    M.L.V. Ramires, C.A. Nieto De Castro, R.A. Perkins, Y. Nagasaka, A. Nagashima, M.J. Assael, W.A. Wakeham, J. Phys. Chem. Ref. Data 29, 133 (2000)CrossRefADSGoogle Scholar
  34. 34.
    Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM) (Joint Committee for Guides in Metrology, 2008)Google Scholar
  35. 35.
    R.W. Powell, C.Y. Ho, P.E. Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS 8 (National Bureau of Standards Reference Data Series, 1966)Google Scholar
  36. 36.
    D. Salmon, G. Roebben, A. Lamberty, R. Brandt, Certification of thermal conductivity and thermal diffusivity up to 1025 K of a glass-ceramic reference material BCR-724, Report EUR 21764 EN, DG JRC(European Commission, Directorate-General, Joint Research Centre, Institute for Reference Materials and Measurements, 2007)Google Scholar
  37. 37.
    ASTM E 438-92, Standard Specification for Glasses in Laboratory Apparatus (ASTM International, West Conshohocken, 2011)Google Scholar
  38. 38.
    I. Williams, R.E. Shawyer, Certification report for a pyrex glass reference material for thermal conductivity between \(-\)C—CRM 039 (Community Bureau of Reference BCR, Commission of the European Communities, Brussels, 1991)Google Scholar
  39. 39.
    R.P. Tye, D.R. Salmon, Thermal Conductivity Reference Materials: Pyrex 7740 and Polymethyl Methacrylate, NPL Report (National Physical Laboratory, 2003)Google Scholar
  40. 40.
    S. Rudtsch, R. Stosch, U. Hammerschmidt, Intercomparison of measurements of the thermophysical properties of Crown Borosilicate Glass BK7 in European Conference on Thermophysical Properties (ECTP 2002), London, GB (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory of Thermophysical Properties & Environmental Processes, Chemical Engineering DepartmentAristotle UniversityThessalonikiGreece
  2. 2.Tessera MultimediaThessalonikiGreece
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK
  4. 4.Center of Thermal and Fluid ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  5. 5.Xi’an Xiatech Electronics Co, Ltd.Xi’anPeople’s Republic of China

Personalised recommendations