Advertisement

International Journal of Thermophysics

, Volume 36, Issue 10–11, pp 2922–2939 | Cite as

A System for High-Temperature Homogeneity Scanning of Noble-Metal Thermocouples

  • E. WebsterEmail author
  • R. Mason
  • A. Greenen
  • J. Pearce
Article

Abstract

Noble-metal thermocouples are amongst the most widely used thermocouples for high-temperature process measurement and as references. Although they are less susceptible to inhomogeneity effects than the more-common base-metal thermocouples, inhomogeneity is still the major source of uncertainty. Currently, most estimates of the uncertainty due to inhomogeneity are based on thermocouple specifications or historical performance of similar thermocouples. It is not common for the inhomogeneity to be measured directly, in part because there is no accepted method for measuring the inhomogeneities, and in part because there is no conclusive evidence linking the magnitude of inhomogeneities determined at the scanning temperature to the effects of the same inhomogeneities at other temperatures. This paper describes an inhomogeneity scanner able to be fitted to sodium heat-pipe furnaces to operate between \(600 {\,{}^{\circ }}\hbox {C}\) and \(1000 {\,{}^{\circ }}\hbox {C}\). Comparison of scans made at \(100 {\,{}^{\circ }}\hbox {C}\) demonstrates the scalability of some types of inhomogeneity in Type S and R thermocouples. It is concluded that for Type R and S thermocouples, a robust uncertainty assessment can be obtained from a scan made at a single temperature.

Keywords

Drift Homogeneity scanning Inhomogeneity Noble-metal Thermocouples Uncertainty 

Notes

Acknowledgments

The author wishes to acknowledge the financial assistance and resources provided by NPL in completing this work.

References

  1. 1.
    W.P. White, Phys. Rev. (Ser. I) 23, 449–474 (1906)CrossRefADSGoogle Scholar
  2. 2.
    J.V. Pearce, Meas. Sci. Technol. 18, 3489–3495 (2007)CrossRefADSGoogle Scholar
  3. 3.
    M. Ballico, F. Jahan, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 8, ed. by C.W. Meyer (AIP, New York, 2013), pp. 544–548Google Scholar
  4. 4.
    E.S. Webster, D.R. White, Metrologia 52, 130–144 (2015)CrossRefADSGoogle Scholar
  5. 5.
    F. Jahan, M. Ballico, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 7, ed. by D.C. Ripple (AIP, New York, 2002), pp. 523–528Google Scholar
  6. 6.
    Y.G. Kim, C.H. Song, K.S. Gam, I. Yang, Meas. Sci. Technol. 20, 1–5 (2009)Google Scholar
  7. 7.
    E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–\(1100 {\,{}^{\circ }}\text{ C }\), Part 3, NRCC 17409 edn. (National Research Council Canada, 1983)Google Scholar
  8. 8.
    E.S. Webster, Int. J. Thermophys. (2015) (in press)Google Scholar
  9. 9.
    F. Jahan, M. Ballico, Int. J. Thermophys. 31, 1544–1553 (2010)CrossRefADSGoogle Scholar
  10. 10.
    R.E. Bentley, Theory and Practice of Thermoelectric Thermometry, 1st edn. (Springer, Singapore, 1998)Google Scholar
  11. 11.
    I. Jursic, S. Rudtsch, Int. J. Thermophys. 35, 1055–1066 (2014)CrossRefADSGoogle Scholar
  12. 12.
    R.E. Bentley, Aust. J. Instrum. Control 4, 4–9 (1989)Google Scholar
  13. 13.
    M. Gotoh, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 7, ed. by D.C. Ripple, (AIP, New York, 2002), pp. 481–484Google Scholar
  14. 14.
    E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. 36, 444–466 (2014)CrossRefADSGoogle Scholar
  15. 15.
    E.S. Webster, Int. J. Thermophys. 35, 574–595 (2014)CrossRefADSGoogle Scholar
  16. 16.
    T.G. Kollie, J.L. Horton, K.R. Carr, M.B. Herskovitz, C.A. Mossman, Rev. Sci. Instrum. 46, 1447–1461 (1975)CrossRefADSGoogle Scholar
  17. 17.
    A.W. Fenton, in Temperature, Its Measurement and Control in Science and Industry, Part 3, vol. 4, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1973–1990Google Scholar
  18. 18.
    N.A. Burley, R.M. Hess, C.F. Howie, J.A. Coleman, in Temperature, Its Measurement and Control in Science and Industry, Part 2, vol. 5, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 1159–1166Google Scholar
  19. 19.
    D.D. Pollock, Thermocouples Theory and Properties (CRC Press, Boca Raton, 1991)Google Scholar
  20. 20.
    G. Machin, K. Anhalt, F. Edler, J. Pearce, M. Sadli, R. Strnad, E. Vuelban, in 16th International Congress of Metrology (EDP Sciences, 2013)Google Scholar
  21. 21.
    R.E. Bentley, Measurement 23, 35–46 (1998)CrossRefGoogle Scholar
  22. 22.
    K.D. Hill, Metrologia 31, 51–58 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Y.G. Kim, K.S. Gam, J.H. Lee, Meas. Sci. Technol. 8, 317–321 (1997)CrossRefADSGoogle Scholar
  24. 24.
    R.E. Bentley, Meas. Sci. Technol. 12, 1250–1260 (2001)CrossRefADSGoogle Scholar
  25. 25.
    O. Ongrai, J. Pearce, G. Machin, S. Sweeney, Int. J. Thermophys. 31, 1506–1516 (2010)CrossRefADSGoogle Scholar
  26. 26.
    J. Tamba, K. Yamazawa, S. Masuyama, H. Ogura, M. Izuchi, Int. J. Thermophys. 32, 2436–2451 (2011)CrossRefADSGoogle Scholar
  27. 27.
    G. W. Burns, M. G. Scroger, G. F. Strouse, M. C. Croarkin, W. F. Guthrie, in Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90 (NIST, 1993)Google Scholar
  28. 28.
    R.E. Bentley, Meas. Sci. Technol. 11, 538–546 (2000)CrossRefADSGoogle Scholar
  29. 29.
    P. Kinzie, Thermocouple Temperature Measurements, 1st edn. (Wiley, New York, 1973)Google Scholar
  30. 30.
    F. Edler, P. Ederer, in Temperature, Its Measurement and Control in Science and Industry, Part 1, vol. 8, ed. by C.W. Meyer, (AIP, New York, 2013), pp. 532–537Google Scholar
  31. 31.
    M. Rubel, Mater. Sci. Eng. 9–12 (1987)Google Scholar
  32. 32.
    J.C. Chaston, Platin. Met. Rev. 9, 51–56 (1965)Google Scholar
  33. 33.
    J.C. Chaston, Platin. Met. Rev. 19, 135–140 (1975)Google Scholar
  34. 34.
    T. Li, E.A. Marquis, P.A.J. Bagot, S.C. Tsang, G.D.W. Smith, Catal. Today 175, 552–557 (2011)CrossRefGoogle Scholar
  35. 35.
    J.C. Chaston, Platin. Met. Rev. 8, 50–54 (1964)Google Scholar
  36. 36.
    J.C. Chaston, Platin. Met. Rev. 10, 91–93 (1966)Google Scholar
  37. 37.
    R.E. Bentley, Int. J. Thermophys. 6, 83–99 (1985)CrossRefADSGoogle Scholar
  38. 38.
    F. Edler, A.C. Baratto, Metrologia 42, 201–207 (2005)CrossRefADSGoogle Scholar
  39. 39.
    J.V. Pearce, H. Ogura, M. Izuchi, G. Machin, Metrologia 46, 743–749 (2009)CrossRefGoogle Scholar
  40. 40.
    Y. Kim, I. Yang, K. Gam, Instrum. Sci. Technol. 36, 257–266 (2008)CrossRefGoogle Scholar
  41. 41.
    E.H. McLaren, E.G. Murdock, Temperature, Its Measurement and Control in Science and Industry, Part 3, vol. 4, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1543–1560Google Scholar
  42. 42.
    E.H. McLaren, E.G. Murdock, Temperature, Its Measurement and Control in Science and Industry, Part 2, vol. 5, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 953–975Google Scholar
  43. 43.
    R.E. Bentley, Meas. Sci. Technol. 12, 627–634 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Measurement Standards LaboratoryLower HuttNew Zealand
  2. 2.National Physical LaboratoryTeddingtonUK

Personalised recommendations