International Journal of Thermophysics

, Volume 36, Issue 10–11, pp 2897–2915 | Cite as

Large-Scale Experimental Study of a Phase Change Material: Shape Identification for the Solid–Liquid Interface

  • Soumaya Kadri
  • Belgacem Dhifaoui
  • Yvan Dutil
  • Sadok Ben Jabrallah
  • Daniel R. Rousse
Article

Abstract

This study describes the development of an experimental setup that tracks the evolution of the melting and freezing fronts of a Phase Change Material (PCM), in this case paraffin. The results obtained enable the examination of the shape and movement of the melting front of the PCM. Two modes of heat transfer were identified during the melting process: conduction when melting began and natural convection, which becomes dominant in the remainder of the cycle. Monitoring of the melt over time shows that the melt fraction, expressed as the ratio of the molten volume and solid volume, is proportional to the difference between the imposed temperature and the melting temperature. Experimental results confirm the linearity proposed by other researchers.

Keywords

Phase change material Experimental work Solid–liquid interface Melting process 

List of Symbols

Variables

A

Aspect ratios (\(\mathrm{{A}} = {\mathrm{{H}} {\cdot } \mathrm{{L}}}^{-1}\))

c

Specific heat at constant pressure (\(\mathrm{{J}}{\cdot }\mathrm{kg}^{-1}{\cdot }\mathrm{{K}}^{-1})\)

\(h_{sl}\)

Latent heat of melting/solidification of PCM \((\mathrm{{J}}{\cdot } \mathrm{{kg}}^{-1})\)

Fo

Fourier number \((\mathrm{{Fo}} = {\upalpha }{\cdot }\mathrm{{t{\cdot }L}}^{-2})\)

H

Height of the rectangular enclosure (m)

k

Thermal conductivity \((\mathrm{{W{\cdot }m}}^{-1}{\cdot }\mathrm{{K}}^{-1})\)

L

Length of the rectangular enclosure (m)

Ra

Rayleigh number \((\hbox {Ra} = \mathrm{{g}}{\cdot }{\upbeta }\,(\mathrm{{T}}_{\mathrm{h}}-\mathrm{{T}}_{\mathrm{m}}){\cdot }\mathrm{{L}}^{3}{\cdot }({\upalpha }{\cdot }{{\upnu }})^{-1})\)

Ste

Stefan number \((\hbox {Ste} = \mathrm{{C}}{\cdot }(\mathrm{{T}}_{\mathrm{h}}-\mathrm{{T}}_{\mathrm{m}}){\cdot }\mathrm{{h}}_{\mathrm{sl}}^{-1})\)

t

Time (s)

T

Temperature \((^{\circ }\hbox {C})\)

V

Volume of the PCM liquid \((\hbox {m}^{3})\)

\(V_{0}\)

Total volume of the PCM \((\hbox {m}^{3})\)

xy

Cartesian coordinates of the enclosure (m)

Greek Symbols

\(\alpha \)

Thermal diffusivity \((\mathrm{{m}}^{2}{\cdot }\mathrm{{s}}^{-1})\)

\(\beta \)

Thermal expansion coefficient \((\hbox {K}^{-1})\)

\(\nu \)

Kinematic viscosity \((\mathrm{{m}}^{2}{\cdot }\mathrm{{s}}^{-1})\)

\(\rho \)

Density \((\mathrm{{kg}}{\cdot }\mathrm{{m}}^{-3})\)

Subscripts

c

Cold

h

Hot

i

Insulating material

l

Liquid

m

Melting point

s

Solid

References

  1. 1.
    A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev. 13, 318 (2009)CrossRefGoogle Scholar
  2. 2.
    F. Agyenim, N. Hewitt, P. Eames, M. Smyth, Renew. Sustain. Energy Rev. 14, 615 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Baetens, B.P. Jelle, A. Gustavsen, Energy Build. 42, 1361 (2010)CrossRefGoogle Scholar
  4. 4.
    M.M. Kenisarin, Renew. Sustain. Energy Rev. 14, 955 (2010)CrossRefGoogle Scholar
  5. 5.
    L.F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, A.I. Fernández, Renew. Sustain. Energy Rev. 15, 1675 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Kuznik, D. David, K. Johannes, J.J. Roux, Renew. Sustain. Energy Rev. 15, 379 (2011)CrossRefGoogle Scholar
  7. 7.
    E. Oró, A. De Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Appl. Energy 99, 513 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Zhou, C.Y. Zhao, Y. Tian, Appl. Energy 92, 593 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Waqas, Z. Ud Din, Renew. Sustain. Energy Rev 18, 607 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Dutil, D. Rousse, N.B. Salah, S. Lassue, L. Zalewski, Renew. Sustain. Energy Rev. 15, 112–130 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Dutil, D. Rousse, S. Lassue, L. Zalewski, A. Joulin, J. Virgone, F. Kuznik, K. Johannes, J.-P. Dumas, J.-P. Bédécarrats, A. Castell, L.F. Cabeza, Renew. Energy 61, 132 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Hannoun, V. Alexiades, T.Z. Mai, Num. Heat Transf, Part B: Fundam 44, 253 (2003)CrossRefADSGoogle Scholar
  13. 13.
    T.A. Campbell, J.N. Koster, J. Cryst. Growth. 140, 414 (1994)CrossRefADSGoogle Scholar
  14. 14.
    C. Gau, R. Viskanta, Int. J. Heat Mass Transf. 27, 113 (1984)CrossRefGoogle Scholar
  15. 15.
    C. Gau, R. Viskanta, J. Heat Transf. 108, 174 (1986)CrossRefGoogle Scholar
  16. 16.
    I. Wintruff, C. Günther, A.G. Class, Numerical Heat Transfer, Part B: Fundam. 39, 127 (2001)CrossRefADSGoogle Scholar
  17. 17.
    O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Quéré, M. Médale, J. Mencinger, H. Sadat, G. Vieira, Int. J. Therm. Sci. 38, 5 (1999)CrossRefGoogle Scholar
  18. 18.
    D. Gobin, P. Le Quéré, Comp. Ass. Mech. Eng. Sci. 7, 289 (2000)MATHGoogle Scholar
  19. 19.
    J. Szekely, P.S. Chabra, Metall. Mater. Trans. B. 1, 1195 (1970)ADSGoogle Scholar
  20. 20.
    F.M. Chiesa, R.I.L. Guthrie, J. Heat Transf. 96, 377 (1974)CrossRefGoogle Scholar
  21. 21.
    R.H. Marshall, Therm. Storage. Heat Transf. Solar Energy Syst. 61 (1978)Google Scholar
  22. 22.
    N.W. Hale, R. Viskanta Jr, Lett. Heat Mass Transf. 5, 329 (1978)CrossRefGoogle Scholar
  23. 23.
    V.P. Carey, B. Gebhart, J. Fluid Mech. 107, 37 (1981)CrossRefADSGoogle Scholar
  24. 24.
    P.D. Van Buren, R. Viskanta, Int. J. Heat Mass Transf. 23, 568 (1980)CrossRefGoogle Scholar
  25. 25.
    C.-J. Ho, R. Viskanta, J. Heat Transf. 106, 12 (1984)CrossRefGoogle Scholar
  26. 26.
    F. Wolff, R. Viskanta, Int. J. Exp. Heat Transf. 1, 17 (1987)CrossRefADSGoogle Scholar
  27. 27.
    C. Beckermann, R. Viskanta, J. Heat Transf. 111, 416 (1989)CrossRefGoogle Scholar
  28. 28.
    M. Bareiss, H. Beer, Int. Commun. Heat Mass transfer. 11, 323 (1984)CrossRefGoogle Scholar
  29. 29.
    M. Okada, Proc. ASME/JSME Therm. Eng. Jt. Conf. 1, 281 (1983)Google Scholar
  30. 30.
    M.M. Sorour, M.A. Hassab, M.B. Madi, F.T. Kandil, Int. Commun. Heat Mass Transf. 14, 167 (1987)CrossRefGoogle Scholar
  31. 31.
    Z. Zhang, A. Bejan, J. Heat Mass Transf. 32, 1063 (1989)CrossRefGoogle Scholar
  32. 32.
    Z. Zhang, A. Bejan, Int. J. Heat Mass Transf. 32, 2447 (1989)CrossRefGoogle Scholar
  33. 33.
    K.J. Choi, J.S. Hong, Int. J. Exp. Heat Transf. 3, 49 (1990)CrossRefADSGoogle Scholar
  34. 34.
    Y. Wang, A. Amiri, K. Vafai, Int. J. Heat Mass Transf. 42, 3659 (1999)CrossRefGoogle Scholar
  35. 35.
    P.D. Silva, L.C. Goncalves, L. Pires, Appl. Energy 73, 83 (2002)CrossRefGoogle Scholar
  36. 36.
    H. Yin, J.N. Koster, J. Alloy. Compd. 52, 175 (2003)CrossRefGoogle Scholar
  37. 37.
    Z. Younsi, L. Zalewski, S. Lassue, D. Rousse, A. Joulin, Int J. Thermophys. 32, 674 (2011)CrossRefADSGoogle Scholar
  38. 38.
    L. Kumar, B.S. Manjunath, R.J. Patel, S.G. Markandeya, R.G. Agrawal, A. Agrawal, Y. Kashyap, P.S. Sarkar, A. Sinha, K.N. Iyer, S.V. Prabhu, Int. J. Therm. Sci. 61, 15 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Shokouhmand, B. Kamkari, Exp. Therm. Fluid. Sci. 50, 201 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Kamkari, H. Shokouhmand, F. Bruno, Int. J. Heat Mass Transf. 72, 186 (2014)CrossRefGoogle Scholar
  41. 41.
    N.C. Barford, in Experimental Measurements: Precision, Error and Truth, 2nd edn, Repr. (Wiley, Chichester, 1990)Google Scholar
  42. 42.
    B. Binet, M. Lacroix, Int. J. Numer. Method. Heat. Fluid Flow 10, 286 (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Soumaya Kadri
    • 1
  • Belgacem Dhifaoui
    • 1
    • 2
  • Yvan Dutil
    • 3
    • 4
  • Sadok Ben Jabrallah
    • 1
    • 5
  • Daniel R. Rousse
    • 4
  1. 1.Laboratory of Energy, Heat and mass TransferCampus UniversityTunisTunisia
  2. 2.Higher Institute of Applied Science and Technology of MateurUnivesity of CarthageTunisTunisia
  3. 3.UER Science et TechnologieTélé-UniversitéQuebecCanada
  4. 4.t3e Industrial Research ChairEcole de technologie superieureMontrealCanada
  5. 5.Faculty of Sciences of BizerteUniversity of CarthageBizerteTunisia

Personalised recommendations