Advertisement

International Journal of Thermophysics

, Volume 36, Issue 8, pp 1909–1924 | Cite as

Effect of Annealing on Drift in Type S Thermocouples Below \(900\, ^{\circ }\hbox {C}\)

  • E. S. WebsterEmail author
Article

Abstract

Type R and Type S platinum/platinum–rhodium thermocouples are amongst the most widely used high-temperature thermocouples, both for process measurement and as reference thermocouples. To achieve the lowest practical uncertainties, below \(1\, ^{\circ }\hbox {C}\), the thermocouples must be in a well-defined thermoelectric state. There are two annealing procedures in common use that leave the thermocouples in different states, leading to a potential ambiguity and uncertainty. This paper reports on experiments with Type S thermocouples clearly exposing the different drift characteristics for the two different annealed states. Thermocouples used above \(800\, ^{\circ }\hbox {C}\) show the least drift when annealed at \(1100\, ^{\circ }\hbox {C}\) and then passively quenched to room temperature. If used at lower temperatures, they exhibit drift, at temperatures as low as \(170\, ^{\circ }\hbox {C}\), with the drift peaking at \(0.3\, ^{\circ }\hbox {C}\) to \(0.4\, ^{\circ }\hbox {C}\) around \(300\, ^{\circ }\hbox {C}\) to \(600 \, ^{\circ }\hbox {C}\). Thermocouples used below \(800\, ^{\circ }\hbox {C}\) are best annealed at \(1100\, ^{\circ }\hbox {C}\), and then again at \(450\, ^{\circ }\hbox {C}\). In this state, they exhibit practically zero drift for temperatures up to about \(600 \, ^{\circ }\hbox {C}\). Advice on calibration procedures to minimise the effects of drift is given.

Keywords

Annealing Drift Inhomogeneity scanning Noble-metal  Thermocouples Uncertainty 

Notes

Acknowledgments

The author wishes to acknowledge the work of Hamish Edgar (MSL) in the construction of the furnaces used in this study and the insightful discussions with Rod White (MSL).

References

  1. 1.
    E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–1100\(\, ^{\circ }{C}\), Part 3, 17409th edn. (National Research Council Canada, 1983)Google Scholar
  2. 2.
    E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–1100\(\, ^{\circ }C\), Part 2, 17408th edn. (National Research Council Canada, 1979)Google Scholar
  3. 3.
    E.H. McLaren, E.G. Murdock, The Properties of Pt/PtRh Thermocouples for Thermometry in the Range 0–1100\(\, ^{\circ }\text{ C }\), Part 1, 17407th edn. (National Research Council Canada, 1979)Google Scholar
  4. 4.
    R.E. Bentley, Measurement 23, 35–46 (1998)CrossRefGoogle Scholar
  5. 5.
    R.E. Bentley, T.P. Jones, High Temp. High Press. 12, 33–45 (1980)zbMATHGoogle Scholar
  6. 6.
    R.E. Bentley, Theory and Practice of Thermoelectric Thermometry, 1st edn. (Springer, Berlin, 1998)Google Scholar
  7. 7.
    F. Jahan, M. Ballico, Int. J. Thermophys. 31, 1544–1553 (2010)CrossRefADSzbMATHGoogle Scholar
  8. 8.
    E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control in Science and Industry (Part 2), vol. 5, ed. by J.F. Schooley (Instrument Society of America, Pittsburgh, 1982), pp. 959–975Google Scholar
  9. 9.
    E.H. McLaren, E.G. Murdock, C.G. Kirby, Rev. Sci. Instrum. 43, 827–828 (1972)CrossRefADSGoogle Scholar
  10. 10.
    F. Edler, P. Ederer, qq, in Temperature, Its Measurement and Control in Science and Industry. Part 1, ed. by C.W. Meyer (AIP, Melville, NY, 2013), pp. 532–537Google Scholar
  11. 11.
    E.H. McLaren, E.G. Murdock, in Temperature, Its Measurement and Control in Science and Industry. Part 3, vol. 4, ed. by H.H. Plumb, H.H. Plumb (Instrument Society of America, Pittsburgh, 1972), pp. 1543–1560Google Scholar
  12. 12.
    E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. 36, 444–466 (2014)CrossRefADSGoogle Scholar
  13. 13.
    R.E. Bentley, J. Phys. E 20, 1368–1373 (1987)CrossRefADSGoogle Scholar
  14. 14.
    D.R. White, R.S. Mason, Int. J. Thermophys. 31, 1654–1662 (2010)CrossRefADSGoogle Scholar
  15. 15.
    E.S. Webster, D.R. White, Metrologia 52, 130–144 (2015)CrossRefADSGoogle Scholar
  16. 16.
    G.W. Burns, M.G. Scroger, G.F. Strouse, M.C. Croarkin, W.F. Guthrie, Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90 (NIST, Washington, DC, 1993)CrossRefGoogle Scholar
  17. 17.
    J.C. Chaston, Platin. Met. Rev. 19, 135–140 (1975)Google Scholar
  18. 18.
    T. Li, E.A. Marquis, P.A.J. Bagot, S.C. Tsang, G.D.W. Smith, Catal. Today 175, 552–557 (2011)CrossRefGoogle Scholar
  19. 19.
    W.S. Ohm, K.D. Hill, Int. J. Thermophys. 31, 1402–1416 (2010)CrossRefADSzbMATHGoogle Scholar
  20. 20.
    C.A. Krier, R.I. Jaffee, J. Less Common Met. 5, 411–431 (1963)CrossRefGoogle Scholar
  21. 21.
    J.C. Chaston, Platin. Met. Rev. 10, 91–93 (1966)Google Scholar
  22. 22.
    H. Jehn, J. Less Common Met. 100, 321–339 (1984)CrossRefGoogle Scholar
  23. 23.
    R.J. Berry, Metrologia 16, 117–126 (1980)CrossRefADSGoogle Scholar
  24. 24.
    R.E. Bentley, Meas. Sci. Technol. 11, 538–546 (2000)CrossRefADSGoogle Scholar
  25. 25.
    R.E. Bentley, Meas. Sci. Technol. 12, 627–634 (2001)CrossRefADSGoogle Scholar
  26. 26.
    A. Seeger, G. Schottky, D. Schumacher, Phys. Status Solidi 11, 363–370 (1965)CrossRefGoogle Scholar
  27. 27.
    D. Schumacher, A. Seeger, O. Harlin, Phys. Status Solidi 25, 359–371 (1968)CrossRefzbMATHGoogle Scholar
  28. 28.
    T.G. Kollie, J.L. Horton, K.R. Carr, M.B. Herskovitz, C.A. Mossman, Rev. Sci. Instrum. 46, 1447–1461 (1975)CrossRefADSGoogle Scholar
  29. 29.
    Z.W. Lu, S.H. Wei, A. Zunger, Phys. Rev. Lett. 66, 1753 (1991)CrossRefADSGoogle Scholar
  30. 30.
    K. Yuge, A. Seko, A. Kuwabara, F. Oba, I. Tanaka, Phys. Rev. B 74, 174202 (2006)CrossRefADSGoogle Scholar
  31. 31.
    A. Marucco, B. Nath, J. Mater. Sci. 23, 2107–2114 (1988)CrossRefADSGoogle Scholar
  32. 32.
    E. Lang, V. Lupinc, A. Marucco, Mater. Sci. Eng. 114, 147–157 (1989)CrossRefGoogle Scholar
  33. 33.
    A. Marucco, Mater. Sci. Eng. 189, 267–276 (1994)CrossRefGoogle Scholar
  34. 34.
    R. Norhein, N.J. Grant, J. Inst. Met. 82, 440–444 (1953)zbMATHGoogle Scholar
  35. 35.
    W.E. Clayton, C.R. Brooks, Metall. Mater. Trans. A 2, 531–535 (1971)ADSGoogle Scholar
  36. 36.
    F. Jahan, M. Ballico, Int. J. Thermophys. 28, 1832–1842 (2007)CrossRefADSGoogle Scholar
  37. 37.
    R.E. Bentley, Metrologia 35, 41–47 (1998)CrossRefADSGoogle Scholar
  38. 38.
    J.P. Evans, S.D. Wood, Metrologia 7, 108–130 (1971)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Measurement Standards LaboratoryLower HuttNew Zealand

Personalised recommendations