International Journal of Thermophysics

, Volume 36, Issue 8, pp 2124–2149 | Cite as

Uncertainty Analysis of Thermal Comfort Parameters

  • A. Silva Ribeiro
  • J. Alves e Sousa
  • Maurice G. Cox
  • Alistair B. Forbes
  • L. Cordeiro Matias
  • L. Lages Martins
Article

Abstract

International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote (PMV) and predicted percentage dissatisfied (PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

Keywords

Thermal comfort Uncertainty evaluation GUM  GUM supplement 1 Monte Carlo method 

References

  1. 1.
  2. 2.
    F. Nicol, M. Humphreys, S. Roaf, Adaptive Thermal Comfort. Principles and Practice (Routledge Taylor & Francis Group, London, 2012)Google Scholar
  3. 3.
    ISO. ISO 7730:2005 Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of the Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria (International Organization for Standardization, Geneva, Switzerland)Google Scholar
  4. 4.
    BIPM, Iec, IFCC, Ilac, ISO, Iupac, IUPAP, OIML. Evaluation of Measurement Data— Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology, JCGM 100:2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
  5. 5.
    BIPM, Iec, IFCC, Ilac, ISO, Iupac, IUPAP, OIML. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method. Joint Committee for Guides in Metrology, JCGM 101:2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
  6. 6.
    M.G. Kendall, A. Stuart, The Advanced Theory of Statistics, Volume 1: Distribution Theory (Charles Griffin, London, 1963)Google Scholar
  7. 7.
    M.G. Cox, P.M. Harris, SS fM Best Practice Guide No. 6, Uncertainty evaluation. Tech. Rep. MS 6, National Physical Laboratory, Teddington, UK (2010). http://www.npl.co.uk/publications/software-suuport-for-metrology-best-practice-guide-no.-6.-uncertainty-evaluation
  8. 8.
    T.J. Dekker, in Constructive Aspects of the Fundamental Theorem of Algebra, ed. by B. Dejon, P. Henrici (Wiley Interscience, London, 1969)Google Scholar
  9. 9.
    P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, London, 1981)Google Scholar
  10. 10.
    J.R. Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, Belmont, 1995)Google Scholar
  11. 11.
    M. Correia Guedes, L. Matias, C. Pina Santos, Renew. Energy 34(11), 2357 (2009)Google Scholar
  12. 12.
    J. Nicol, M. Humphreys, Energy Build. 34(6), 563 (2002). doi:10.1016/S0378-7788(02)00006-3. http://www.sciencedirect.com/science/article/pii/S0378778802000063. Special Issue on Thermal Comfort Standards
  13. 13.
    M.G. Cox, A.B. Forbes, P.M. Harris, J.A. Sousa, in IMEKO World Congress, September 18–22, 2006, Rio de Janeiro (206) (2006)Google Scholar
  14. 14.
    ISO. ISO 9920:2007 Ergonomics of the Thermal Environment—Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble (International Organization for Standardization, Geneva, Switzerland)Google Scholar
  15. 15.
    J.N. Lyness, C.B. Moler, SIAM J. Numer. Anal. 4, 202 (1967)MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    A.H. Al-Mohy, N.J. Higham, Numer. Algorithm 53, 133 (2010)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    R. Boudjemaa, M.G. Cox, A.B. Forbes, P.M. Harris, in Advanced Mathematical and Computational Tools in Metrology VI, ed. by P. Ciarlini, M.G. Cox, F. Pavese, G.B. Rossi (World Scientific, Singapore, 2004), pp. 170–179Google Scholar
  18. 18.
    M. Cox, A. Forbes, P. Harris, C. Matthews, Uncertainty Quantification in Scientific Computing (Springer, Berlin, 2012), pp. 180–194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Silva Ribeiro
    • 1
  • J. Alves e Sousa
    • 2
  • Maurice G. Cox
    • 3
  • Alistair B. Forbes
    • 3
  • L. Cordeiro Matias
    • 1
  • L. Lages Martins
    • 1
  1. 1.National Laboratory for Civil EngineeringLisbonPortugal
  2. 2.Madeira Regional Laboratory for Civil EngineeringFunchalPortugal
  3. 3.National Physical LaboratoryTeddingtonUK

Personalised recommendations