International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 1349–1357 | Cite as

Thermal Characterization of Carbon Nanotubes by Photothermal Techniques

  • G. Leahu
  • R. Li Voti
  • M. C. Larciprete
  • C. Sibilia
  • M. Bertolotti
  • I. Nefedov
  • I. V. Anoshkin


Carbon nanotubes (CNTs) are multifunctional materials commonly used in a large number of applications in electronics, sensors, nanocomposites, thermal management, actuators, energy storage and conversion, and drug delivery. Despite recent important advances in the development of CNT purity assessment tools and atomic resolution imaging of individual nanotubes by scanning tunnelling microscopy and high-resolution transmission electron microscopy, the macroscale assessment of the overall surface qualities of commercial CNT materials remains a great challenge. The lack of quantitative measurement technology to characterize and compare the surface qualities of bulk manufactured and engineered CNT materials has negative impacts on the reliable and consistent nanomanufacturing of CNT products. In this paper it is shown how photoacoustic spectroscopy and photothermal radiometry represent useful non-destructive tools to study the optothermal properties of carbon nanotube thin films.


Carbon nanotubes Photoacoustics techniques Photothermal techniques Thermal boundary resistance Thermal diffusivity 



This work has been performed in the framework of the “FISEDA” program granted by the Italian Ministry of Defence.


  1. 1.
    M.F.L. De Volder, Science 339, 535 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    J. Appenzeller, D.J. Frank, Appl. Phys. Lett. 84, 1771 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Lin, F. Lu, Y. Tu, Z. Ren, Nano Lett. 4, 191 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    R.M. Reilly, J. Nucl. Med. 48, 1040 (2007)CrossRefGoogle Scholar
  5. 5.
    Z.-P. Yang, L. Ci, J.A. Bur, S.-Y. Lin, P.M. Ajayan, Nano Lett. 8, 446 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    H. Shi, J.G. Ok, H.W. Baac, L.J. Guo, Appl. Phys. Lett. 99, 211103 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    M.A. Kats, R. Blanchard, P. Genevet, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Opt. Lett. 38, 368 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    G. Leahu, R. Li Voti, C. Sibilia, M. Bertolotti, Appl. Phys. Lett. 103, 231114 (2013)Google Scholar
  10. 10.
    R. Li Voti, M.C. Larciprete, G. Leahu, C. Sibilia, M. Bertolotti, J. Nanophotonics 6, 061601 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R. Li Voti, M.C. Larciprete, G. Leahu, C. Sibilia, M. Bertolotti, Appl. Phys. 112, 034305 (2012)CrossRefGoogle Scholar
  12. 12.
    M.C. Larciprete, A. Albertoni, A. Belardini, G. Leahu, R. Li Voti, F. Mura, C. Sibilia, I. Nefedov, I.V. Anoshkin, E.I. Kauppinen, A.G. Nasibulin, J. Appl. Phys. 112, 083503 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.C. Larciprete, A. Belardini, R. Li Voti, G. Leahu, C. Sibilia, M. Bertolotti, Rom. Rep. Phys. 65, 681 (2013)Google Scholar
  14. 14.
    M.C. Larciprete, A. Belardini, G. Leahu, R. Li Voti, F. Mura, A. Albertoni, C. Sibilia, Proc. SPIE 8771, 877107 (2013)Google Scholar
  15. 15.
    M.C. Larciprete, R. Li Voti, G.L. Leahu, A. Belardini, F. Mura, C. Sibilia, A. Albertoni, Nuovo Cimento Soc. Ital. Fis. C 36, 43 (2013)Google Scholar
  16. 16.
    E.G. Rakov, Russ. Chem. Rev. 82, 538 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Rosencwaig, Anal. Chem. 47, 592A (1975)CrossRefGoogle Scholar
  18. 18.
    G. Leahu, R. Li Voti, S. Paoloni, C. Sibilia, M. Bertolotti, Rev. Sci. Instrum. 84, 123111 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G. Leahu, R. LiVoti, C. Sibilia, M. Bertolotti, V. Golubev, D.A. Kurdyukov, Opt. Quant. Electron. 39, 305 (2007)CrossRefGoogle Scholar
  20. 20.
    A. Mandelis, Solid State Electron. 42, 1 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    R. Li Voti, G.L. Liakhou, S. Paoloni, C. Sibilia, M. Bertolotti, J. Optoelectron. Adv. Mater. 3, 779 (2001)Google Scholar
  22. 22.
    M. Bertolotti, G.L. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, J. Appl. Phys. 85, 3540 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    J.F. Power, Rev. Sci. Instrum. 73, 4057 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    C. Glorieux, R. LiVoti, J. Thoen, M. Bertolotti, C. Sibilia, Inverse Prob. 15, 1149 (1999)MATHADSCrossRefGoogle Scholar
  25. 25.
    C. Glorieux, R. Li Voti, J. Thoen, M. Bertolotti, C. Sibilia, J. Appl. Phys. 85, 7059 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    R. Li Voti, M.C. Larciprete, G.L. Leahu, M. Bertolotti, C. Sibilia, Nuovo Cimento Soc. Ital. Fis. C 36, 23 (2013)Google Scholar
  27. 27.
    A. Mandelis, F. Funak, M. Munidasa, J. Appl. Phys. 80, 5570 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    R. Li Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    P.E. Greenwood, M.S. Nikulin, A Guide to Chi-Squared Testing (Wiley, New York, 1996). ISBN 0-471-55779-XMATHGoogle Scholar
  30. 30.
    R. Li Voti, Rom. Rep. Phys. 64, 446 (2012)Google Scholar
  31. 31.
    M.C. Larciprete, A. Belardini, R. Li Voti, C. Sibilia, Opt. Express 21, A576 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    D. Jiang Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Phys. Rev. B 66, 165440 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    M. Bertolotti, A. Ferrari, G.L. Liakhou, R. LiVoti, A. Marras, T.A. Ezquerra, F.J. Balta-Calleja, J. Appl. Phys. 78, 5706 (1995)Google Scholar
  35. 35.
    N. Akima, Y. Iwasa, S. Brown, A.M. Barbour, J. Cao, J.L. Musfeldt, H. Matsui, N. Toyota, M. Shiraishi, H. Shimoda, O. Zhou, Adv. Mater. 18, 1166 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • G. Leahu
    • 1
  • R. Li Voti
    • 1
  • M. C. Larciprete
    • 1
  • C. Sibilia
    • 1
  • M. Bertolotti
    • 1
  • I. Nefedov
    • 2
  • I. V. Anoshkin
    • 2
  1. 1.Dipartimento di Scienze di Base ed Applicate per l’IngegneriaSapienza Università di RomaRomaItaly
  2. 2.School of Electrical Engineering, SMARAD Center of ExcellenceAalto UniversityAaltoFinland

Personalised recommendations