Advertisement

International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 1327–1335 | Cite as

Arc Shape of High-Intensity Discharge Lamps: Simulation and Experiments

  • J. Schwieger
  • B. Baumann
  • M. Wolff
Article

Abstract

A stationary compressible three-dimensional (3D) model of photothermal processes inside an arc tube of a high-intensity discharge lamp is developed on the basis of the finite element method. It takes plasma, electrodes, and the tube wall into account and enables simulation of acoustic phenomena. The temperature profile of the discharge arc is used as a marker for the emission of visible light. Complementary, experimental investigations are conducted at different modulation frequencies. A photodetector array is used to record 2D information about the light intensity distribution. The shape and length of the discharge arc are determined and compared to numerical results.

Keywords

Acoustic resonance Arc shape High-intensity discharge (HID) lamp Multiphysics simulation Photodetector 

Notes

Acknowledgments

This research was supported by the German Federal Ministry of Education and Research (BMBF) under project reference 03FH025PX2 and Philips Lighting. We thank F. Manders and J. Suijker for providing the experimental setup and the material data of the plasma.

References

  1. 1.
    J.C.A. Anton, C. Blanco, F.J. Ferrero, J.C. Viera, N. Bordel, A. Martin, G. Zissis, IEEE Trans. Ind. Appl. 43, 1191 (2007)CrossRefGoogle Scholar
  2. 2.
    J. Zhou, L. Ma, Z. Qian, in Proceedings of 14th Annual Conference on Applied Power Electronics (APEC‘99), vol. 1 (1999), pp. 480–485Google Scholar
  3. 3.
    G.A. Trestman, O. Sylvania, in Proceedings of the 28th IEEE Annual Conference of the Industrial Electronics Society, vol. 2 (2002), pp. 1214–1218Google Scholar
  4. 4.
    F. Afshar, J. Illum. Eng. Soc. 5, 27 (2008)Google Scholar
  5. 5.
    T.D. Dreeben, J. Phys. D 41, 144023 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B. Baumann, M. Wolff, J. Hirsch, P. Antonis, S. Bhosle, R.V. Barrientos, J. Phys. D 42, 225209 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J. Hirsch, B. Baumann, M. Wolff, S. Bhosle, R.V. Barrientos, J. Phys. D 43, 234002 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M.B. Ben Hamida, K. Charrada, Phys. Plasmas 19, 063504 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M. Galvez, J. Phys. D 38, 3011 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P.Y. Chang, W. Shyy, J.T. Dakin, Int. J. Heat Mass Transf. 33, 483 (1990)CrossRefGoogle Scholar
  11. 11.
    W. Shyy, P.Y. Chang, Int. J. Heat Mass Transf. 33, 495 (1990)CrossRefGoogle Scholar
  12. 12.
    P.Y. Chang, W. Shyy, Int. J. Heat Mass Transf. 35, 1857 (1992)CrossRefGoogle Scholar
  13. 13.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, London, 1964)Google Scholar
  14. 14.
    P. Flesch, M. Neiger, J. Phys. D 38, 3098 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P. Flesch, M. Neiger, J. Phys. D 37, 2848 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    IDS Imaging Development Systems GmbH, Manual of UI-1120SE-M-GL camera, http://de.ids-imaging.com/store/produkte/kameras/ui-1120se.html. Accessed 02 Sept 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Heinrich Blasius Institute for Physical TechnologiesHamburg University of Applied SciencesHamburgGermany

Personalised recommendations