International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 1342–1348 | Cite as

Photoacoustic Characterization of Randomly Oriented Silver Nanowire Films

  • R. Li Voti
  • G. Leahu
  • M. C. Larciprete
  • C. Sibilia
  • M. Bertolotti
  • I. Nefedov
  • I. V. Anoshkin
Article

Abstract

In this work, the photoacoustic characterization in the UV/Vis range of randomly oriented silver nanowire films deposited onto either a quartz or polymeric substrate is presented. This study was performed for a set of films differing in both metallic nanowire dimensions, as well as metal content. Samples were prepared starting from suspensions of Ag nanowires in isopropanol (IPA) \((25~\mathrm{mg}{\cdot }\mathrm{ml}^{-1})\), differing in both the length and diameter of the nanowires. The obtained films were characterized by scanning electron micrography (SEM) images; thus, the metal filling factor was retrieved with MATLAB software based on a visual method. Following the morphological characterization, both spectrophotometry and the photoacoustic spectroscopy (PAS) technique were employed to investigate in detail the absorbance spectra of silver nanowire films, in order to evidence their peculiar properties in the UV/Vis spectral range. Specifically, this photothermal technique is particularly useful to investigate a film that may exhibit relevant scattering phenomena, as for metallic nanowire films. The obtained experimental results show that the choice of the metal filling factor may affect the absorbance spectra of the resulting mesh.

Keywords

Absorbance Photoacoustic spectroscopy Photothermal technique Silver nanowires 

Notes

Acknowledgments

This work has been performed in the framework of the “FISEDA” program granted by the Italian Ministry of Defence.

References

  1. 1.
    Y. Sun, Nanoscale 2, 1626 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A. Belardini, M.C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, F. Buatier de Mongeot, Phys. Rev. Lett. 107, 257401 (2011)Google Scholar
  3. 3.
    J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang, Science 321, 930 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano Lett. 8, 689 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A. Belardini, M.C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, F.B. De Mongeot, Opt. Express 17, 3603 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A. Belardini, F. Pannone, G. Leahu, M.C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, F. Buatier de Mongeot, Appl. Phys. Lett. 100, 251109 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Belardini, F. Pannone, G. Leahu, M.C. Larciprete, M. Centini, C. Sibilia, C. Martella, M. Giordano, D. Chiappe, F. Buatier de Mongeot, J. Eur. Opt. Soc. Rap. Public. 7, 12051 (2012)CrossRefGoogle Scholar
  8. 8.
    M.C. Larciprete, A. Albertoni, A. Belardini, G. Leahu, R. Li Voti, F. Mura, C. Sibilia, I. Nefedov, I.V. Anoshkin, E.I. Kauppinen, A.G. Nasibulin, J. Appl. Phys. 112, 083503 (2012)Google Scholar
  9. 9.
    M.C. Larciprete, A. Belardini, R. Li Voti, G. Leahu, C. Sibilia, M. Bertolotti, Rom. Rep. Phys. 65, 681 (2013)Google Scholar
  10. 10.
    M.A. Kats, R. Blanchard, P. Genevet, Z. Yang, M.M. Qazilbash, D.N. Basov, S. Ramanathan, F. Capasso, Optics Lett. 38, 368 (2013)Google Scholar
  11. 11.
    G. Leahu, R. Li Voti, C. Sibilia, M. Bertolotti, Appl. Phys. Lett. 103, 231114 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A.R. Madaria, A. Kumar, F.N. Ishikawa, C. Zhou, Nano Res. 3, 564 (2010)CrossRefGoogle Scholar
  13. 13.
    M.C. Larciprete, A. Belardini, G. Leahu, R. Li Voti, F. Mura, A. Albertoni, C. Sibilia, Proc. SPIE 8771, 877107 (2013)Google Scholar
  14. 14.
    M.C. Larciprete, R. Li Voti, G.L. Leahu, A. Belardini, F. Mura, C. Sibilia, A. Albertoni, Nuovo Cimento della Societa Italiana di Fisica C 36, 43 (2013)Google Scholar
  15. 15.
    A. Rosencwaig, Anal. Chem. 47, 592A (1975)CrossRefGoogle Scholar
  16. 16.
    R. Li Voti, G.L. Leahu, S. Gaetani, C. Sibilia, V. Violante, E. Castagna, M. Bertolotti, J. Opt. Soc. Am. B 26, 1585 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Bertolotti, A. Ferrari, G.L. Liakhou, R. Li Voti, A. Marras, T.A. Ezquerra, F.J. Balta-Calleja, J. Appl. Phys. 78, 5706 (1995)Google Scholar
  18. 18.
    M. Bertolotti, S. Ligia, G. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, G. Ricciardiello, P. Alessi, J. Appl. Phys. 85, 2881 (1999)Google Scholar
  19. 19.
    R. Li Voti, Rom. Rep. Phys. 64, 446 (2012)Google Scholar
  20. 20.
    G. Leahu, R. Li Voti, S. Paoloni, C. Sibilia, M. Bertolotti, Rev Sci. Instrum. 84, 123111 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Li Voti, G.L. Liakhou, S. Paoloni, C. Sibilia, M. Bertolotti, J. Optoelectron. Adv. Mater. 3, 779 (2001)Google Scholar
  22. 22.
    M. Bertolotti, G.L. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, J. Appl. Phys. 85, 3540 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    R. Li Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. Li Voti
    • 1
  • G. Leahu
    • 1
  • M. C. Larciprete
    • 1
  • C. Sibilia
    • 1
  • M. Bertolotti
    • 1
  • I. Nefedov
    • 2
  • I. V. Anoshkin
    • 3
  1. 1.Dipartimento di Scienze di Base ed Applicate per l’IngegneriaSapienza Università di RomaRomeItaly
  2. 2.School of Electrical Engineering SMARAD Center of ExcellenceAalto UniversityAaltoFinland
  3. 3.Department of Applied PhysicsAalto University School of ScienceEspooFinland

Personalised recommendations