International Journal of Thermophysics

, Volume 36, Issue 1, pp 5–24 | Cite as

Revised Model for the Thermal Conductivity of Multicomponent Electrolyte Solutions and Seawater

  • Peiming Wang
  • Andrzej AnderkoEmail author


A previously developed model for calculating the thermal conductivity of electrolyte solutions has been revised. The model represents the effect of electrolytes by introducing two terms in addition to the thermal conductivity of the solvent, i.e., a contribution of individual species expressed using modified Riedel coefficients and an ionic strength-dependent term that accounts for interactions between species. The revision improves and simplifies the ionic strength dependence of the species interaction term. The model has been parameterized based on extensive data for binary, ternary, and quaternary aqueous solutions containing the \(\hbox {Na}^{+}, \hbox {K}^{+}, \hbox {Mg}^{2+}, \hbox {Ca}^{2+}, \hbox {Cl}^{-}, \hbox {SO}_{4}^{2-}, \hbox {HCO}_{3}^{-}\), and \(\hbox {Br}^{-}\) ions at temperatures ranging from 273 K to 573 K and pressures up to at least 1000 bar. Good agreement between the calculations and experimental data has been obtained with an overall average deviation of 0.44 %. Further, the model has been used to predict the thermal conductivity of seawater and to evaluate the consistency and accuracy of experimental seawater data in view of those for its key components. While older seawater data suffer from significant discrepancies and are not in satisfactory agreement with the model, the predictions are in an excellent agreement with the recent data of Sharqawy. Finally, a much simplified yet accurate model has been formulated specifically for seawater by recasting the complete model in terms of salinity (rather than concentrations of individual components), temperature, and pressure.


Aqueous solutions Electrolytes Seawater Thermal conductivity 


  1. 1.
    P. Wang, A. Anderko, Int. J. Thermophys. 33, 235 (2012). doi: 10.1007/s10765-012-1154-8 ADSCrossRefGoogle Scholar
  2. 2.
    P. Wang, A. Anderko, Ind. Eng. Chem. Res. 47, 5698 (2008). doi: 10.1021/ie071373c CrossRefGoogle Scholar
  3. 3.
    M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Desalin. Water Treat. 16, 354 (2010)CrossRefGoogle Scholar
  4. 4.
    M.H. Sharqawy, Desalination 313, 97 (2013). doi: 10.1016/j.desal.2012.12.010 CrossRefGoogle Scholar
  5. 5.
    L.A. Akhmedova-Azizova, I.M. Abdulagatov, J. Solut. Chem. 43, 421 (2014). doi: 10.1007/s10953-014-0141-z CrossRefGoogle Scholar
  6. 6.
    L.A. Akhmedova-Azizova, I.M. Abdulagatov, J. Solut. Chem. 38, 1015 (2009). doi: 10.1007/s10953-009-9428-x CrossRefGoogle Scholar
  7. 7.
    D.S. Abrams, J.M. Prausnitz, AIChE J. 21, 116 (1975). doi: 10.1002/aic.690210115 CrossRefGoogle Scholar
  8. 8.
    L. Riedel, Chem. Ing. Tech. 23, 59 (1951)CrossRefGoogle Scholar
  9. 9.
    I.M. Abdulagatov, N.D. Azizov, Int. J. Thermophys. 26, 593 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    I.M. Abdulagatov, U.B. Magomedov, Int. J. Thermophys. 15, 401 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    K.M. Abdullaev, V.S. El’darov, A.M. Mustafaev, High Temp. 36, 375 (1998)Google Scholar
  12. 12.
    G.G. Aseyev, Electrolyte. Properties of Solutions. Methods for Calculation of Multicomponent Systems and Experimental Data on Thermal Conductivity and Surface Tension (Begell House Inc. Publishers, New York, 1999)Google Scholar
  13. 13.
    M.J. Assael, E. Charitidou, J.C. Stassis, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 93, 887 (1989)CrossRefGoogle Scholar
  14. 14.
    E.I. Chernen’kaya, G.A. Vernigora, Zh. Prikl. Khim. 45, 1704 (1972)Google Scholar
  15. 15.
    P.S. Davis, F. Theeuwes, R.J. Bearman, R.P. Gordon, J. Chem. Phys. 55, 4776 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    V.S. El’darov, Zh. Fiz. Khim. 60, 603 (1986)Google Scholar
  17. 17.
    V.S. El’darov, High Temp. 41, 327 (2003). doi: 10.1023/a:1024282308625 CrossRefGoogle Scholar
  18. 18.
    V.S. El’darov, Energetika 1, 57 (2004)Google Scholar
  19. 19.
    A.F. Kapustinskii, I.I. Ruzavin, Zh. Fiz. Khim. 29, 2222 (1955)Google Scholar
  20. 20.
    U.B. Magomedov, High Temp. 31, 458 (1993)Google Scholar
  21. 21.
    U.B. Magomedov, High Temp. 36, 44 (1998)Google Scholar
  22. 22.
    E. Meyer, Z. Ges, Kälte Ind. 47, 129 (1940)Google Scholar
  23. 23.
    Y. Nagasaka, H. Okada, J. Suzuki, A. Nagashima, Ber. Bunsenges. Phys. Chem. 87, 859 (1983)CrossRefGoogle Scholar
  24. 24.
    M.L.V. Ramires, C.A.N. de Castro, Int. J. Thermophys. 21, 671 (2000). doi: 10.1023/a:1006628419636 CrossRefGoogle Scholar
  25. 25.
    M.L.V. Ramires, C.A.N. Decastro, J. Fareleira, W.A. Wakeham, J. Chem. Eng. Data 39, 186 (1994). doi: 10.1021/je00013a053 CrossRefGoogle Scholar
  26. 26.
    W. Rau, Z. Angew. Phys. 1, 211 (1948)Google Scholar
  27. 27.
    N.B. Vargaftik, Y.P. Os’minin, Teploenergetika 3, 11 (1956)Google Scholar
  28. 28.
    V.D. Yusufova, R.I. Pepinov, V.A. Nikolaev, G.M. Guceinov, Inzh. Fiz. Zhur. 29, 600 (1975)Google Scholar
  29. 29.
    V.J. Castelli, E.M. Stanley, E.C. Fischer, Deep Sea Res. 21, 311 (1974)Google Scholar
  30. 30.
    D. Caldwell, Deep Sea Res. 21, 131 (1974)Google Scholar
  31. 31.
    S. Nukiyama, Y. Yoshizawa, J. Soc. Mech. Eng. Jpn. 37, 347 (1934)Google Scholar
  32. 32.
    R. Tufeu, B. Le Neindre, P. Johannin, Compt. Rend. 262, 229 (1966)Google Scholar
  33. 33.
    W.H. Emerson, D.T. Jamieson, Desalination 3, 213 (1967)CrossRefGoogle Scholar
  34. 34.
    B.M. Fabuss, A. Korosi, Properties of Seawater and Solutions Containing Sodium Chloride, Potassium Chloride, Sodium Sulphate and Magnesium Sulphate, Office of Saline Water Research Development Progress Report 348 (1968)Google Scholar
  35. 35.
    D.T. Jamieson, J.S. Tudhope, Desalination 8, 393 (1970)CrossRefGoogle Scholar
  36. 36.
    International Association for the Properties of Water and Steam, Release of the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance IAPWS.
  37. 37.
    M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    A.L. Horvath, Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation and Correlation Methods (Wiley, New York, 1985)Google Scholar
  39. 39.
    B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2001)Google Scholar
  40. 40.
    F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, Deep Sea Res. I 55, 50 (2008). doi: 10.1016/j.dsr.2007.10.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.OLI Systems Inc.Cedar KnollsUSA

Personalised recommendations