Advertisement

International Journal of Thermophysics

, Volume 35, Issue 6–7, pp 971–984 | Cite as

Microwave-Dimensional Measurements of Cylindrical Resonators for Primary Acoustic Thermometry

  • R. J. Underwood
  • G. J. Edwards
Article

Abstract

Acoustic gas thermometry relies on the fundamental relationship between the speed of sound in a monatomic gas and its thermodynamic temperature. The speed of sound is calculated from the resonance frequencies of a cavity whose dimensions or thermal expansivity must be measured with high accuracy. For quasi-spherical cavities, the use of microwave resonances is a successful and proven dimensional measurement technique. The simplicity and economy of cylindrical resonators makes them an attractive alternative to quasi-spherical resonators, particularly for high-temperature thermometry. This article summarizes the basic theory of cylindrical microwave resonators, and describes methods for obtaining cavity dimensions from the mode frequencies. The perturbing effects of cavity shape deformations, the wall to end-plate junction, coupling probes and non-conducting surface layers are discussed. The results of an experiment with a simple aluminum cavity are presented, which demonstrate the superior performance of the TE0\(pq\) modes over the more commonly used TM0\(pq\) modes.

Keywords

Acoustic gas thermometry Microwave resonators Thermal expansivity 

Notes

Acknowledgments

This work was partly funded by the EMRP. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Crown copyright 2013. Reproduced by permission of the Controller of HMSO and the Queen’s printer for Scotland.

References

  1. 1.
    J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011)CrossRefADSGoogle Scholar
  2. 2.
    M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Metrologia 51, R1 (2014)Google Scholar
  3. 3.
    M.B. Ewing, J.B. Mehl, M.R. Moldover, J.P.M. Trusler, Metrologia 25, 211 (1988)CrossRefADSGoogle Scholar
  4. 4.
    R. Underwood, D. Flack, P. Morantz, G. Sutton, P. Shore, M. de Podesta, Metrologia 48, 1 (2011)CrossRefADSGoogle Scholar
  5. 5.
    D.C. Ripple, G.F. Strouse, M.R. Moldover, Int. J. Thermophys. 28, 1789 (2007)CrossRefADSGoogle Scholar
  6. 6.
    L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006)CrossRefADSGoogle Scholar
  7. 7.
    J.T. Zhang, H. Lin, X.J. Feng, J.P. Sun, K.A. Gillis, M.R. Moldover, Y.Y. Duan, Int. J. Thermophys. 32, 1297 (2011)CrossRefADSGoogle Scholar
  8. 8.
    X.J. Feng, K.A. Gillis, M.R. Moldover, J.B. Mehl, Metrologia 50, 219 (2013)CrossRefADSGoogle Scholar
  9. 9.
    R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961)Google Scholar
  10. 10.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975)zbMATHGoogle Scholar
  11. 11.
    J.C. Slater, Rev. Mod. Phys. 18, 441 (1946)MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. 12.
    R.A. Waldron, Theory of Guided Electromagnetic Waves (Van Nostrand, London, 1970)Google Scholar
  13. 13.
    J.B. Mehl, M.R. Moldover, Phys. Rev. A 34, 3341 (1986)CrossRefADSGoogle Scholar
  14. 14.
    H.E. Bussey, IRE Trans. Instrum. I-9, 171 (1960)Google Scholar
  15. 15.
    A. Agliolo Gallitto, G. Bonsignore, M. Li Vigni, G. Giunchi, Y.A. Nefyodov, Phys. C: Supercond. 468, 66 (2008)CrossRefADSGoogle Scholar
  16. 16.
    M.B. Ewing, D.D. Royal, J. Chem. Thermodyn. 34, 1073 (2002)CrossRefGoogle Scholar
  17. 17.
    R.J. Underwood, J.B. Mehl, L. Pitre, G. Edwards, G. Sutton, M. de Podesta, Meas. Sci. Technol. 21 (2010)Google Scholar
  18. 18.
    R.J. Underwood, J.B. Mehl, private communicationGoogle Scholar
  19. 19.
    L. Pitre, F. Sparasci, D. Truong, A. Guillou, L. Risegari, M.E. Himbert, Int. J. Thermophys. 32, 1825 (2011)CrossRefADSGoogle Scholar
  20. 20.
    J.C. Gallop, W. Radcliffe, J. Phys. E: Sci. Instrum. 19, 413 (1986)CrossRefADSGoogle Scholar
  21. 21.
    Aluminium alloy 6082–T6 datasheet, http://www.aalco.co.uk. Accessed 11 July 2014
  22. 22.
    P.D. Desai, H.M. James, C.Y. Ho, J. Phys. Chem. Ref. Data 13, 1131 (1984)CrossRefADSGoogle Scholar
  23. 23.
    R. Underwood, S. Davidson, M. Perkin, P. Morantz, G. Sutton, M. de Podesta, Metrologia 49, 245 (2012)CrossRefADSGoogle Scholar

Copyright information

© Crown Copyright 2014

Authors and Affiliations

  1. 1.National Physical LaboratoryTeddingtonUK

Personalised recommendations