Advertisement

International Journal of Thermophysics

, Volume 35, Issue 2, pp 195–217 | Cite as

Measurement and Prediction of the Thermal Conductivity of Tricyanomethanide- and Tetracyanoborate-Based Imidazolium Ionic Liquids

  • Thomas M. Koller
  • Stefan R. Schmid
  • Swetlana J. Sachnov
  • Michael H. Rausch
  • Peter Wasserscheid
  • Andreas P. Fröba
Article

Abstract

The thermal conductivity of ten ionic liquids (ILs) based on the anions \([\mathrm{C(CN)}_{3}]^{-}\) (tricyanomethanide) and \([\mathrm{B(CN)}_{4}]^{-}\) (tetracyanoborate) carrying a homologous series of the [alkyl-MIM]\(^{+}\) (1-alkyl-3-methylimidazolium) cations [EMIM]\(^{+}\)(ethyl), [BMIM]\(^{+}\) (butyl) [HMIM]\(^{+}\) (hexyl), [OMIM]\(^{+}\) (octyl), [DMIM]\(^{+}\) (decyl) was measured by a steady-state guarded parallel-plate instrument in the temperature range between (283.15 and 353.15) K at atmospheric pressure with a total uncertainty of 5 % (\(k\,=\,2\)). Furthermore, the refractive index required for data evaluation and the density, which is an important property in the developed prediction method for the thermal conductivity, were determined. In general, the measured thermal conductivities of the probed ILs decrease with increasing temperature and increasing alkyl-chain length of the cation. Regarding the influence of the anion, somewhat smaller values for the \([\mathrm{B(CN)}_{4}]^{-}\)-based ILs compared to the \([\mathrm{C(CN)}_{3}]^{-}\)-based ILs carrying the same cation are observed. Our previously developed simple prediction method for the thermal conductivity of ILs at 293.15 K using only information on the molar mass and the density could be improved. By the combination of this approach with the temperature dependence of the density, an extended empirical correlation additionally describing the temperature dependence of the thermal conductivity of ILs is recommended. This correlation represents all experimental thermal-conductivity data in the literature with a standard deviation of less than 7 %.

Keywords

Density Ionic liquids Parallel-plate method Prediction Refractive index Thermal conductivity 

Notes

Acknowledgments

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) by funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative. In addition, financial support from the 7th European Commission Framework Program for Research and Technological Development for the project “Novel Ionic Liquid and Supported Ionic Liquid Solvents for Reversible Capture of CO\(_{2}\)” (IOLICAP Project No. 283077) is gratefully acknowledged.

Supplementary material

10765_2014_1617_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (doc 140 KB)

References

  1. 1.
    P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2007)CrossRefGoogle Scholar
  2. 2.
    M. Smiglak, A. Metlen, Acc. Chem. Res. 40, 1182 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Chen, Y. He, J. Zhu, H. Alias, Y. Ding, P. Nancarrow, C. Hardacre, D. Rooney, C. Tan, Int. J. Heat Fluid Flow 29, 149 (2008)CrossRefGoogle Scholar
  4. 4.
    W. Chen, L. Qiu, S. Liang, X. Zheng, D. Tang, Thermochim. Acta 560, 1 (2013)CrossRefGoogle Scholar
  5. 5.
    Q.-L. Chen, K.-J. Wu, C.-H. He, J. Chem. Eng. Data 58, 2058 (2013)CrossRefGoogle Scholar
  6. 6.
    A.G.M. Ferreira, P.N. Simões, A.F. Ferreira, M.A. Fonseca, M.S.A. Oliveira, A.S.M. Trino, J. Chem. Thermodyn. 64, 80 (2013)CrossRefGoogle Scholar
  7. 7.
    E.B. Fox, A.E. Visser, N.J. Bridges, J.W. Amoroso, Energy Fuels 27, 3385 (2013)CrossRefGoogle Scholar
  8. 8.
    J.M.P. França, S.I.C. Vieira, M.J.V. Lourenço, S.M.S. Murshed, C.A. Nieto de Castro, J. Chem. Eng. Data 58, 467 (2013)CrossRefGoogle Scholar
  9. 9.
    C. Frez, G.J. Diebold, C.D. Tran, S. Yu, J. Chem. Eng. Data 51, 1250 (2006)CrossRefGoogle Scholar
  10. 10.
    A.P. Fröba, M.H. Rausch, K. Krzeminski, D. Assenbaum, P. Wasserscheid, A. Leipertz, Int. J. Thermophys. 31, 2059 (2010)CrossRefADSGoogle Scholar
  11. 11.
    R.L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, D.W. Rooney, J. Chem. Eng. Data 55, 1505 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Ge, C. Hardacre, P. Nancarrow, D.W. Rooney, J. Chem. Eng. Data 52, 1819 (2007)CrossRefGoogle Scholar
  13. 13.
    C.A. Nieto de Castro, M.J.V. Lourenço, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, J. Chem. Eng. Data 55, 653 (2010)CrossRefGoogle Scholar
  14. 14.
    A.P.C. Ribeiro, S.I.C. Vieira, P. Goodrich, C. Hardacre, M.J.V. Lourenço, C.A. Nieto de Castro, J. Nanofluids 2, 55 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, C. Yokoyama, Int. J. Thermophys. 28, 1147 (2007)CrossRefADSGoogle Scholar
  16. 16.
    D. Tomida, S. Kenmochi, T. Tsukada, C. Yokoyama, Netsu Bussei 20, 173 (2007)CrossRefGoogle Scholar
  17. 17.
    D. Tomida, S. Kenmochi, T. Tsukada, K. Qiao, Q. Bao, C. Yokoyama, Int. J. Thermophys. 33, 959 (2012)CrossRefADSGoogle Scholar
  18. 18.
    D. Tomida, S. Kenmochi, K. Qiao, T. Tsukada, C. Yokoyama, Fluid Phase Equilib. 340, 31 (2013)Google Scholar
  19. 19.
    M.E. Van Valkenburg, R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochim. Acta 425, 181 (2005)CrossRefGoogle Scholar
  20. 20.
    B. Wang, X. Wang, W. Lou, J. Hao, Nanoscale Res. Lett. 6, 259 (2011)CrossRefADSGoogle Scholar
  21. 21.
    B. Wang, X. Wang, W. Lou, J. Hao, J. Colloid Interface Sci. 362, 5 (2011)CrossRefGoogle Scholar
  22. 22.
    F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi, W. Ma, Nanoscale Res. Lett. 7, 314 (2012)CrossRefADSGoogle Scholar
  23. 23.
    H. Liu, E.J. Maginn, A.E. Visser, N.J. Bridges, E.B. Fox, Ind. Eng. Chem. Res. 51, 7242 (2012)CrossRefGoogle Scholar
  24. 24.
    C.M. Tenney, M. Massel, J.M. Mayes, M. Sen, J.F. Brennecke, E.J. Maginn, J. Chem. Eng. Data 59, 391 (2014)CrossRefGoogle Scholar
  25. 25.
    V.D. Bhatt, K. Gohil, Thermochim. Acta 556, 23 (2013)CrossRefGoogle Scholar
  26. 26.
    T.J. Abraham, D.R. MacFarlane, R.H. Baughman, L. Jin, N. Li, J.M. Pringle, Electrochim. Acta 113, 87 (2013)CrossRefGoogle Scholar
  27. 27.
    R.L. Gardas, J.A.P. Coutinho, AIChE J. 55, 1274 (2009)CrossRefGoogle Scholar
  28. 28.
    K.-J. Wu, C.-X. Zhao, C.-H. He, Fluid Phase Equilib. 339, 10 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, AIChE J. 59, 1348 (2013)CrossRefGoogle Scholar
  30. 30.
    A.Z. Hezave, S. Raeissi, M. Lashkarbolooki, Ind. Chem. Eng. Res. 51, 9886 (2012)CrossRefGoogle Scholar
  31. 31.
    S.A. Shojaee, S. Farzam, A.Z. Hezave, M. Lashkarbolookic, S. Ayatollahid, Fluid Phase Equilib. 354, 199 (2013)CrossRefGoogle Scholar
  32. 32.
    K.-J. Wu, Q.-L. Chen, C.-H. He, AIChE J. 60, 1120 (2014)Google Scholar
  33. 33.
    M. Marszalek, Z. Fei, D.-R. Zhu, R. Scopelliti, P.J. Dyson, S.M. Zakeeruddin, M. Grätzel, Inorg. Chem. 50, 11561 (2011)Google Scholar
  34. 34.
    D. Kuang, P. Wang, S. Ito, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 128, 7732 (2006)CrossRefGoogle Scholar
  35. 35.
    S.M. Mahurin, P.C. Hillesheim, J.S. Yeary, D. Jianga, S. Dai, RSC Adv. 2, 11813 (2012)CrossRefGoogle Scholar
  36. 36.
    S.M. Mahurin, J.S. Lee, G.A. Baker, H. Luo, S. Dai, J. Membr. Sci. 353, 177 (2010)CrossRefGoogle Scholar
  37. 37.
    T.M. Koller, M.H. Rausch, J. Ramos, P.S. Schulz, P. Wasserscheid, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 117, 8512 (2013)Google Scholar
  38. 38.
    T.M. Koller, M.H. Rausch, P.S. Schulz, M. Berger, P. Wasserscheid, I.G. Economou, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 57, 828 (2012)CrossRefGoogle Scholar
  39. 39.
    M.H. Rausch, K. Krzeminski, A. Leipertz, A.P. Fröba, Int. J. Heat Mass Transf. 58, 610 (2013)CrossRefGoogle Scholar
  40. 40.
    Y.M. Naziev, M.M. Bashirov, I.M. Abdulagatov, Fluid Phase Equilib. 226, 221 (2004)CrossRefGoogle Scholar
  41. 41.
    R. Braun, S. Fischer, A. Schaber, Wärme- und Stoffübertragung 17, 121 (1983)CrossRefADSGoogle Scholar
  42. 42.
    M. Kohler, Z. Angew. Phys. 18, 356 (1965)Google Scholar
  43. 43.
    H. Poltz, Int. J. Heat Mass Transf. 8, 515 (1965)CrossRefzbMATHGoogle Scholar
  44. 44.
    M.L.V. Ramires, C.A. Nieto de Castro, R.A. Perkins, Y. Nagasaka, A. Nagashima, M.J. Assael, W.A. Wakeham, J. Phys. Chem. Ref. Data 29, 133 (2000)CrossRefADSGoogle Scholar
  45. 45.
    M. Deetlefs, K.R. Seddon, M. Shara, Phys. Chem. Chem. Phys. 8, 642 (2006)CrossRefGoogle Scholar
  46. 46.
    P. Brocos, A. Piñeiro, R. Bravo, A. Amigo, Phys. Chem. Chem. Phys. 5, 550 (2003)CrossRefGoogle Scholar
  47. 47.
    C.M.S.S. Neves, K.A. Kurnia, J.A.P. Coutinho, I.M. Marrucho, J.N. Canongia Lopes, M.G. Freire, L.P.N. Rebelo, J. Phys. Chem. B 117, 10271 (2013)CrossRefGoogle Scholar
  48. 48.
    S. Seki, S. Tsuzuki, K. Hayamizu, Y. Umebayashi, N. Serizawa, K. Takei, H. Miyashiro, J. Chem. Eng. Data 57, 2211 (2012)CrossRefGoogle Scholar
  49. 49.
    A.P. Fröba, H. Kremer, A. Leipertz, J. Phys. Chem. B 112, 12420 (2008)CrossRefGoogle Scholar
  50. 50.
    B. Hasse, J. Lehmann, D. Assenbaum, P. Wasserscheid, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 54, 2576 (2009)CrossRefGoogle Scholar
  51. 51.
    R.L. Gardas, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, J. Chem. Eng. Data 52, 1881 (2007)CrossRefGoogle Scholar
  52. 52.
    H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B 108, 16593 (2004)CrossRefGoogle Scholar
  53. 53.
    C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, J. Chem. Eng. Data 2004, 954 (2004)CrossRefGoogle Scholar
  54. 54.
    P.J. Carvalho, T. Regueira, L.M.N.B.F. Santos, J. Fernandez, J.A.P. Coutinho. J. Chem. Eng. Data 55, 645 (2010)Google Scholar
  55. 55.
    U. Domańska, A. Marciniak, J. Phys. Chem. B 114, 16542 (2010)CrossRefGoogle Scholar
  56. 56.
    M. Larriba, P. Navarro, J. García, F. Rodríguez, Ind. Chem. Eng. Res. 52, 2714 (2013)CrossRefGoogle Scholar
  57. 57.
    Y. Yoshida, K. Muroi, A. Otsuka, G. Saito, M. Takahashi, T. Yoko, Inorg. Chem. 43, 1458 (2004)CrossRefGoogle Scholar
  58. 58.
    C-Therm Technologies Ltd. (2014), http://www.ctherm.com/products/tci_thermal_conductivity/specifications/. Accessed 13 May 2014
  59. 59.
    K.R. Harris, M. Kanakubo, L.A. Woolf, J. Chem. Eng. Data 52, 1080 (2007)CrossRefGoogle Scholar
  60. 60.
    Z. He, Z. Zhao, X. Zhang, H. Feng, Fluid Phase Equilib. 298, 83 (2009)CrossRefGoogle Scholar
  61. 61.
    C.M.S.S. Neves, P.J. Carvalho, M.G. Freire, J.A.P. Coutinho, J. Chem. Thermodyn. 43, 948 (2011)CrossRefGoogle Scholar
  62. 62.
    L.I.N. Tomé, R.L. Gardas, P.J. Carvalho, M.J. Pastoriza-Gallego, M.M. Piñeiro, J.A.P. Coutinho, J. Chem. Eng. Data 56, 2205 (2011)CrossRefGoogle Scholar
  63. 63.
    C.E. Ferreira, N.M.C. Talavera-Prieto, I.M.A. Fonseca, A.T.G. Portugal, A.G.M. Ferreira, J. Chem. Thermodyn. 47, 183 (2012)CrossRefGoogle Scholar
  64. 64.
    F.M. Gaciño, T. Regueira, L. Lugo, M.J.P. Comuñas, J. Fernández, J. Chem. Eng. Data 56, 4984 (2011)CrossRefGoogle Scholar
  65. 65.
    C. Schreiner, S. Zugmann, R. Hartl, H.J. Gores, J. Chem. Eng. Data 55, 1784 (2010)CrossRefGoogle Scholar
  66. 66.
    L.I.N. Tomé, P.J. Carvalho, M.G. Freire, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, R.L. Gardas, J. Chem. Eng. Data 53, 1914 (2008)CrossRefGoogle Scholar
  67. 67.
    R.L. Gardas, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, J. Chem. Eng. Data 52, 80 (2007)CrossRefGoogle Scholar
  68. 68.
    J. Jacquemin, R. Ge, P. Nancarrow, D.W. Rooney, M.F. Costa Gomes, A.A.H. Pádua, C. Hardacre. J. Chem. Eng. Data 53, 716 (2008)Google Scholar
  69. 69.
    R.L. Gardas, H.F. Costa, M.G. Freire, P.J. Carvalho, I.M. Marrucho, I.M.A. Fonseca, A.G.M. Ferreira, J.A.P. Coutinho, J. Chem. Eng. Data 53, 805 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thomas M. Koller
    • 1
  • Stefan R. Schmid
    • 1
  • Swetlana J. Sachnov
    • 2
  • Michael H. Rausch
    • 1
    • 3
  • Peter Wasserscheid
    • 2
  • Andreas P. Fröba
    • 1
    • 3
  1. 1.Erlangen Graduate School in Advanced Optical Technologies (SAOT)University of Erlangen-NurembergErlangenGermany
  2. 2.Department of Chemical and Biological Engineering, Institute of Chemical Reaction Engineering (CRT)University of Erlangen-NurembergErlangenGermany
  3. 3.Department of Chemical and Biological Engineering, Institute of Engineering Thermodynamics (LTT)University of Erlangen-NurembergErlangenGermany

Personalised recommendations