Advertisement

International Journal of Thermophysics

, Volume 35, Issue 2, pp 256–276 | Cite as

Impact of Associated Gases on Equilibrium and Transport Properties of a \(\mathrm{CO}_{2}\) Stream: Molecular Simulation and Experimental Studies

  • Benoit CretonEmail author
  • Theodorus de Bruin
  • Dominique Le Roux
  • Pierre Duchet-Suchaux
  • Véronique Lachet
Article

Abstract

During the various carbon dioxide capture and storage (CCS) stages, an accurate knowledge of thermodynamic properties of \(\mathrm{CO}_{2}\) streams is required for the correct sizing of plant units. The injected \(\mathrm{CO}_{2}\) streams are not pure and often contain small amounts of associated gaseous components such as \(\mathrm{O}_{2}, \mathrm{N}_{2}\), \(\mathrm{SO}_{x}, \mathrm{NO}_{x}\), noble gases, etc. In this work, the thermodynamic behavior and transport properties of some \(\mathrm{CO}_{2}\)-rich mixtures have been investigated using both experimental approaches and molecular simulation techniques such as Monte Carlo and molecular dynamics simulations. Using force fields available in the literature, we have validated the capability of molecular simulation techniques in predicting properties for pure compounds, binary mixtures, as well as multicomponent mixtures. These validations were performed on the basis of experimental data taken from the literature and the acquisition of new experimental data. As experimental data and simulation results were in good agreement, we proposed the use of simulation techniques to generate new pseudo-experimental data and to study the impact of associated gases on the properties of \(\mathrm{CO}_{2}\) streams. For instance, for a mixture containing 92.0 mol% of \(\mathrm{CO}_{2}\), 4.0 mol% of \(\mathrm{O}_{2}\), 3.7 mol% of Ar, and 0.3 mol% of \(\mathrm{N}_{2}\), we have shown that the presence of associated gases leads to a decrease of 14 % and 21 % of the dense phase density and viscosity, respectively, as compared to pure \(\mathrm{CO}_{2}\) properties.

Keywords

Argon Carbon dioxide Equations of state Experiments   Molecular simulations Nitrogen Oxygen Sulfur dioxide 

Notes

Acknowledgments

The authors would like to thank Drs. Sylvain Thibeau, Joëlle Hy-Billiot, and Catherine Prinet for fruitful discussions, and more generally the company Total for the financial support. The authors also thank Drs. Pascal Mougin, Carlos Nieto-Draghi, and Michel Renard for helpful discussions. BC gratefully thanks Dr. Bernard Rousseau for the use of the NEWTON Molecular Dynamics code.

References

  1. 1.
    R.D. Piacentini, A.S. Mujumdar, Dry. Technol. 27, 629 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Torvanger, M.T. Lund, N. Rive, Mitig. Adapt. Strateg. Glob. Change 18, 187 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Thibeau, P. Chiquet, G. Mouronval, M. Lescanne, Energy Procedia 1, 3383 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Lescanne, J. Hy-Billiot, N. Aimard, C. Prinet, Energy Procedia 4, 3518 (2011)CrossRefGoogle Scholar
  5. 5.
    B. Garcia, J.H. Billiot, V. Rouchon, G. Mouronval, M. Lescanne, V. Lachet, N. Aimard, Oil Gas Sci. Technol. 67, 341 (2012)CrossRefGoogle Scholar
  6. 6.
    N. Jacquemet, Y. Le Gallo, A. Estublier, V. Lachet, I. von Dalwigk, J. Yan, M. Azaroual, P. Audigane, Energy Procedia 1, 3739 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Li, J.P. Jackson, Ø. Wilhelmsen, J. Yan, Appl. Energy 88, 3567 (2011)CrossRefGoogle Scholar
  8. 8.
    H. Li, Ø. Wilhelmsen, Y. Lv, W. Wang, J. Yan, Int. J. Greenh. Gas Control 5, 1119 (2011)CrossRefGoogle Scholar
  9. 9.
    V. Lachet, T. de Bruin, P. Ungerer, C. Coquelet, A. Valtz, V. Hasanov, F. Lockwood, D. Richon, Energy Procedia 1, 1641 (2009)CrossRefGoogle Scholar
  10. 10.
    V. Lachet, B. Creton, T. de Bruin, E. Bourasseau, N. Desbiens, Ø. Wilhelmsen, M. Hammer, Fluid Phase Equilib. 322, 66 (2012)Google Scholar
  11. 11.
    E. Bourasseau, V. Lachet, N. Desbiens, J.-B. Maillet, J.-M. Teuler, P. Ungerer, J. Phys. Chem. B 112, 15783 (2008)CrossRefGoogle Scholar
  12. 12.
    E. El Ahmar, B. Creton, A. Valtz, C. Coquelet, V. Lachet, D. Richon, P. Ungerer, Fluid Phase Equilib. 304, 21 (2011)Google Scholar
  13. 13.
    J. Sterpenich, J. Dubessy, J. Pironon, S. Renard, M.-C. Caumon, A. Randi, J.-N. Jaubert, E. Favre, D. Roizard, M. Parmentier, M. Azaroual, V. Lachet, B. Creton, T. Parra, E. El Ahmar, C. Coquelet, V. Lagneau, J. Corvisier, P. Chiquet, Energy Procedia 37, 3638 (2013)CrossRefGoogle Scholar
  14. 14.
    R.L. Rowley, W.V. Wilding, J.L. Oscarson, Y. Yang, N.A. Zundel, T.E. Daubert, R.P. Danner, DIPPR Data Compilation of Pure Compound Properties (Design Institute for Physical Properties, New York, 2003)Google Scholar
  15. 15.
    S. Bobbo, L. Fedele, M. Scattolini, R. Camporese, J. Chem. Eng. Data 47, 179 (2002)CrossRefGoogle Scholar
  16. 16.
    P. Ungerer, B. Tavitian, A. Boutin, Application of Molecular Simulation in the Oil and Gas Industry—Monte Carlo Methods (Edition Technip, Paris, 2005)Google Scholar
  17. 17.
    A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987)CrossRefADSGoogle Scholar
  18. 18.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, Oxford, 1987)zbMATHGoogle Scholar
  19. 19.
    N.T. Van-Oanh, C. Houriez, B. Rousseau, Phys. Chem. Chem. Phys. 12, 930 (2010)CrossRefGoogle Scholar
  20. 20.
    C. Nieto-Draghi, T. de Bruin, J. Pérez-Pellitero, J. Bonet Avalos, A.D. Mackie, J. Chem. Phys. 126, 064509 (2007)Google Scholar
  21. 21.
    C. Nieto-Draghi, A. Bocahut, B. Creton, P. Have, A. Ghoufi, A. Wender, A. Boutin, B. Rousseau, L. Normand, Mol. Simul. 34, 211 (2008)CrossRefGoogle Scholar
  22. 22.
    B. Creton, T. de Bruin, V. Lachet, C. Nieto-Draghi, J. Phys. Chem. B 114, 6522 (2010)CrossRefGoogle Scholar
  23. 23.
    J.G. Harris, K.H. Yung, J. Phys. Chem. 99, 12021 (1995)CrossRefGoogle Scholar
  24. 24.
    J. Delhommelle, Etablissement de potentiels d’interactions pour la simulation moléculaire. Application à la prédiction des équilibres liquide-vapeur de mélanges binaires alcane-molécule multipolaire, Ph.D. Thesis, Université Paris XI, Orsay, France, 2000Google Scholar
  25. 25.
    J. Vrabec, J. Stoll, H. Hasse, J. Phys. Chem. B 105, 12126 (2001)CrossRefGoogle Scholar
  26. 26.
    Y. Boutard, P. Ungerer, J.M. Teuler, M.G. Ahunbay, S.F. Sabater, J. Pérez-Pellitero, A.D. Mackie, B. Rousseau, Fluid Phase Equilib. 236, 25 (2005)Google Scholar
  27. 27.
    A. Ghoufi, F. Goujon, V. Lachet, P. Malfreyt, J. Chem. Phys. 128, 154716 (2008)CrossRefADSGoogle Scholar
  28. 28.
    J.-C. Neyt, A. Wender, V. Lachet, P. Malfreyt, J. Phys. Chem. B 115, 9421 (2011)CrossRefGoogle Scholar
  29. 29.
    DETHERM, Thermophysical Properties of Pure Substances and Mixtures, version 2012 (DECHEMA, Frankfurt am Main, 2012)Google Scholar
  30. 30.
    E. Sarashina, Y. Arai, S. Saito, J. Chem. Eng. Jpn. 4, 379 (1971)CrossRefGoogle Scholar
  31. 31.
    C. Coquelet, A. Valtz, F. Dieu, D. Richon, P. Arpentinier, F. Lockwood, Fluid Phase Equilib. 273, 38 (2008)Google Scholar
  32. 32.
    NIST, Thermophysical Property Data for Pure Compounds, http://webbook.nist.gov. Accessed 2013
  33. 33.
    K. Stephan, T. Heckenberger, Thermal Conductivity and Viscosity Data of Fluid Mixtures: Tables, Diagrams, Correlations and a Literature Survey, vol. 10, part 1 (DECHEMA Chemistry Data Series, The University of Virginia, Charlottesville, 1988)Google Scholar
  34. 34.
    A. Fredenslund, G.A. Sather, J. Chem. Eng. Data 15, 17 (1970)CrossRefGoogle Scholar
  35. 35.
    G.H. Zenner, L.I. Dana, Chem. Eng. Progr. Symp. Ser. 59, 36 (1963)Google Scholar
  36. 36.
    P.L. Chueh, N.K. Muirbrook, J.M. Prausnitz, AIChE J. 11, 1097 (1965)CrossRefGoogle Scholar
  37. 37.
    G.I. Kaminishi, T. Toriumi, J. Chem. Soc. Jpn. 69, 175 (1966)Google Scholar
  38. 38.
    Y. Arai, G.I. Kaminishi, S. Saito, J. Chem. Eng. Jpn. 4, 113 (1971)CrossRefGoogle Scholar
  39. 39.
    M. Yorizane, S. Yoshimura, H. Masuoka, M. Nakamura, J. Chem. Eng. Jpn. 4, 10 (1971)CrossRefGoogle Scholar
  40. 40.
    T. Al-Sahhaf, A.J. Kidnay, E.D. Sloan, Ind. Eng. Chem. Fundam. 22, 372 (1983)CrossRefGoogle Scholar
  41. 41.
    W. Weber, S. Zeck, H. Knapp, Fluid Phase Equilib. 18, 253 (1984)Google Scholar
  42. 42.
    M. Yorizane, S. Yoshimura, H. Masuoka, Y. Miyano, Y. Kakimoto, J. Chem. Eng. Data 30, 174 (1985)CrossRefGoogle Scholar
  43. 43.
    T.S. Brown, E.D. Sloan, A.J. Kidnay, Fluid Phase Equilib. 51, 299 (1989)Google Scholar
  44. 44.
    Z. Zhanzhu, G. Liping, Y. Xiaodong, H. Knapp, CIESC J. 50, 392 (1999)Google Scholar
  45. 45.
    A. Bluemcke, Ann. Phys. Leipzig 34, 10 (1888)CrossRefADSGoogle Scholar
  46. 46.
    F. Caubet, Z. Phys. Chem. 40, 257 (1902)Google Scholar
  47. 47.
    F. Caubet, Z. Kompr, Fluess. Gase Pressluft-Ind. 8, 65 (1904)Google Scholar
  48. 48.
    D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976)CrossRefzbMATHGoogle Scholar
  49. 49.
    A. Peneloux, E. Rauzy, R. Fréze, Fluid Phase Equilib. 8, 7 (1982)Google Scholar
  50. 50.
    J. Lohrenz, B.G. Bray, C.P. Clark, J. Pet. Technol. 16, 1171 (1964)Google Scholar
  51. 51.
    Process simulation software \(\text{ SimSci }^{{\rm TM}}\) PRO/\(\text{ II }^{{\rm TM}}\) v9.1.3, developed by Invensys\(\textregistered \) Google Scholar
  52. 52.
    Total, private communicationsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Benoit Creton
    • 1
    Email author
  • Theodorus de Bruin
    • 1
  • Dominique Le Roux
    • 1
  • Pierre Duchet-Suchaux
    • 2
  • Véronique Lachet
    • 1
  1. 1.IFP Energies nouvellesRueil-MalmaisonFrance
  2. 2.Total S.A.Paris La Défense CedexFrance

Personalised recommendations