International Journal of Thermophysics

, Volume 35, Issue 3–4, pp 628–635 | Cite as

Distribution Coefficients of Impurities in Metals

  • J. V. Pearce


Impurities dissolved in very pure metals at the level of parts per million often cause an elevation or depression of the freezing temperature of the order of millikelvins. This represents a significant contribution to the uncertainty of standard platinum resistance thermometer calibrations. An important parameter for characterizing the behavior of impurities is the distribution coefficient \(k\), which is the ratio of the solid solubility to liquid solubility. A knowledge of \(k\) for a given binary system is essential for contemporary methods of evaluating or correcting for the effect of impurities, and it is therefore of universal interest to have the most complete set of values possible. A survey of equilibrium values of \(k\) (in the low concentration limit) reported in the literature for the International Temperature Scale of 1990 fixed points of Hg, Ga, In, Sn, Zn, Al, Au, Ag, and Cu is presented. In addition, thermodynamic calculations of \(k\) using MTDATA are presented for \({>}\)170 binary systems. In total, the combined values of \(k\) from all available sources for \({>}\)430 binary systems are presented. In addition, by considering all available values of \(k\) for impurities in 25 different metal solvents (\({>}\)1300 binary systems) enough data are available to characterize patterns in the value of \(k\) for a given impurity as a function of its position in the periodic table. This enables prediction of \(k\) for a significant number of binary systems for which data and calculations are unavailable. By combining data from many sources, values of \(k\) for solutes (atomic number from 1 to 94) in ITS-90 fixed points from Hg to Cu are suggested, together with some tentative predicted values where literature data and calculations are unavailable.


Distribution coefficients Impurities ITS-90 fixed points SPRTs 



The author wishes to thank Hugh Davies (NPL) for assistance with MTDATA, and Pieter Bloembergen (NIM) and Dave Lowe (NPL) for valuable discussions. Crown copyright 2013. Reproduced by permission of the Controller of HMSO and the Queen’s printer for Scotland.


  1. 1.
    B. Fellmuth, K.D. Hill, P. Bloembergen, M. de Groot, Y. Hermier, M. Matveyev, A. Pokhodun, D. Ripple, P.P.M. Steur, “Methodologies for the Estimation of Uncertainties and the Correction of Fixed-Point Temperatures Attributable to the Influence of Chemical Impurities,” Working Document of Consultative Committee on Thermometry CCT/05-08 (2005)Google Scholar
  2. 2.
    K.D. Hill, S. Rudtsch, Metrologia 42, L1 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J.V. Pearce, R.I. Veltcheva, M.J. Large, “Impurity and Thermal Modelling of SPRT Fixed-points,” in Temperature: Its Measurement and Control in Science and Industry, AIP Conference Proceedings 1552, vol. 8: Proceedings of the Ninth International Temperature Symposium, Anaheim, CA (AIP, Melville, NY, 2013), pp. 283–288Google Scholar
  4. 4.
    R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, S.M. Martin, CALPHAD 26, 229 (2002)CrossRefGoogle Scholar
  5. 5.
    D.R. White, M. Ballico, V. Chimenti, S. Duris, E. Filipe, A. Ivanova, A. Kartal Dogan, E. Mendez-Largo, C. Meyer, F. Pavese, A. Peruzzi, E. Renaot, S. Rudtsch, K. Yamazawa, “Uncertainties in the Realisation of the SPRT Subranges of the ITS-90,” Working Document of the Consultative Committee on Thermometry CCT/08-19/rev (2008)Google Scholar
  6. 6.
    S. Rudtsch, “Cryoscopic Constant, Heat and Enthalpy of Fusion of Metals and Water,” Working Document of the Consultative Committee on Thermometry CCT/05-04/rev (2005)Google Scholar
  7. 7.
    V.N. Vigdorovich, Refining of Metals and Semiconductors by Crystallization (Metallurgiya, Moscow, 1969)Google Scholar
  8. 8.
    B. Fellmuth, K. Hill, Metrologia 43, 71 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C. Tabacaru, E. Gomez, D. del Campo, Int. J. Thermophys. 32, 1563 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J. Drapala, L. Kuchar, Metallurgy of Pure Metals (Cambridge International Science Publishing, Cambridge, 2008). ISBN 978-1-904602-03-3Google Scholar
  11. 11.
    J. Drapala, L. Kuchar, Acta Metall. Slovaca 10, 59 (2004)Google Scholar
  12. 12.
    Y. Hoshino, T. Utsunomiya, J. Chem. Eng. Data 27, 144 (1982)CrossRefGoogle Scholar
  13. 13.
    L. Kuchar, J. Drapala, Metallurgy of Pure Metals (Nadácia R. Kammela, Košice, 2000)Google Scholar
  14. 14.
    V.N. Vigdorovič, A.E. Volpjan, G.M. Kurdjumov, Napravlennaja Kristallizacija i Fiziko-Chimičeskij Analiz (Izd. Chimija, Moskva, 1976)Google Scholar
  15. 15.
    K. Hein, E. Buhrig (eds.), Kristallisation aus Schmelzen (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1983), Tables A2/1 and A2/2, pp. 206–208Google Scholar
  16. 16.
    A.N. Kirgincev, I.M. Selivanov, Izv. SO AN SSSR. Ser. Chim. Nauk. 2, 57 (1970)Google Scholar
  17. 17.
    B.N. Aleksandrov, V.I. Udovikov, L.E. Usenko, Fizika kondensirovannogo sostojanija, vol. 25 (Nauchnye Trudy FTINT AN USSR, Charkov, 1973)Google Scholar
  18. 18.
    A.N. Kirgincev, Upravljajemaja kristallizacija v trubčatom kontejnere (Nauka, Novosibirsk, 1978)Google Scholar
  19. 19.
    A.N. Kirgincev, I.I. Gorbačeva, I.G. Judelevič, Izv. SO AN SSSR. Ser. Chim. Nauk. 3, 35 (1967)Google Scholar
  20. 20.
    A.N. Kirgincev, I.I. Gorbačeva, Izv. SO AN SSSR. Ser. Chim. Nauk. 2, 30 (1969)Google Scholar
  21. 21.
    V.N. Vigdorovič, M.A. Morochovec, Izv. AN SSSR. Ser. Metally. 6, 97 (1971)Google Scholar
  22. 22.
    P. Petchpong, D.I. Head, Int. J. Thermophys. 32, 1525 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J.T. Zhang, S. Rudtsch, M. Fahr, Int. J. Thermophys. 29, 151 (2008)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    J.J. Connolly, J.V. McAllen, Metrologia 16, 127 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    Databank of binary alloy phase diagrams,
  26. 26.
    W.F. Gale, T.C. Totemier (eds.), Smithells Metal Reference Book (Elsevier/Butterworth-Heinemann, Oxford, 2003)Google Scholar
  27. 27.
    P. Qiu, J. Sun, J. Zhang, Z. Jin, Acta Metrol. Sin. 29, 79 (2008)Google Scholar
  28. 28.
    G. Krapf, H. Mammen, G. Blumröder, T. Fröhlich, Meas. Sci. Technol. 23, 074022 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J.V. Widiatmo, M. Sakai, K. Satou, K. Yamazawa, J. Tamba, M. Arai, Int. J. Thermophys. 32, 309 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    J. Ancsin, Metrologia 44, 303 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Sun, S. Rudstch, J. Zhang, X. Wu, X. Deng, Effect of Ultra-Trace Impurities on the Freezing Point of Zinc. Int. J. Thermophys. (2014, submitted)Google Scholar
  32. 32.
    J.V. Widiatmo, K. Harada, K. Yamazawa, M. Arai, Metrologia 43, 561 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    E. Ranaot, C. Martin, Int. J. Thermophys 32, 1496 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    J. Drapala, L. Kuchar, M. Kursa, “Preparation of High Purity Metals by Crystallization Methods,” J. Phys. IV, Colloque C7, supplement to J. Phys. III 5, C7–143 (1995)Google Scholar
  35. 35.
    E. Renaot, M.H. Valin, M. Elgourdou, Int. J. Thermophys. 29, 852 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    P. Petchpong, “Quantitative Impurities Effects on Temperatures of Tin and Aluminium Fixed-Point Cells,” Doctoral Thesis, School of Engineering and Design, Brunel University, London, 2009Google Scholar
  37. 37.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (eds.), Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, OH, 1990)Google Scholar
  38. 38.
    J. Ancsin, Metrologia 40, 36 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    P. Petchpong, D.I. Head, Int. J. Thermophys. 32, 1507 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    J.V. Widiatmo, K. Harada, K. Yamazawa, M. Arai, Int. J. Thermophys. 29, 158 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    H. Okamoto, J. Phase Equilib. 14, 262 (1993)CrossRefGoogle Scholar
  42. 42.
    P.W. Atkins, Physical Chemistry (Oxford University Press, Oxford, 1978). ISBN 0-19-855148-7Google Scholar
  43. 43.
    L. Weinstein, J.A. Adam, Guesstimation (Princeton University Press, Princeton, NJ, 2008). ISBN 978-0-691-12949-5Google Scholar
  44. 44.
    J.V. Pearce, “A Coupled Heat and Mass Transfer Model of Pure Metal Freezing Using Comsol Multiphysics,” in Temperature: Its Measurement and Control in Science and Industry, AIP Conference Proceedings 1552, vol. 8: Proceedings of the Ninth International Temperature Symposium, Anaheim, CA (AIP, Melville, NY, 2013), pp. 289–294Google Scholar
  45. 45.
    P. Bloembergen, W. Dong, C. Bai, T. Wang, Int. J. Thermophys. 32, 2633 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    J.A. Burton, R.C. Prim, W.R. Slichter, J. Chem. Phys. 21, 1987 (1953)ADSCrossRefGoogle Scholar
  47. 47.
    W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953)CrossRefGoogle Scholar
  48. 48.
    M. Fahr, S. Rudtsch, A. Aulich, Int. J. Thermophys. 32, 2239 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    M. Fahr, S. Rudtsch, Metrologia 46, 423 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Crown Copyright 2014

Authors and Affiliations

  1. 1.National Physical LaboratoryTeddingtonUK

Personalised recommendations