International Journal of Thermophysics

, Volume 35, Issue 1, pp 76–89 | Cite as

Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

  • L. Qiu
  • Y. M. Li
  • X. H. Zheng
  • J. Zhu
  • D. W. Tang
  • J. Q. Wu
  • C. H. Xu


A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based \(3\omega \) method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be \(0.041\,\hbox { W}\cdot \hbox { m}^{-1}\cdot \hbox { K}^{-1}\) to \(0.078\,\hbox { W}\cdot \hbox { m}^{-1}\cdot \hbox { K}^{-1}\) at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.


3\(\omega \) Technique Freestanding sensor Macro-porous Polymer derived SiOC ceramics Thermal conductivity 



The authors acknowledge financial support from National Basic Research Program of China (Grant No. 2012CB933200) and Projects 51306183 and 51106151 supported by National Natural Science Foundation of China.


  1. 1.
    P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805 (2010)Google Scholar
  2. 2.
    R. Riedel, H.J. Kleebe, H. Schönfelder, F. Aldinger, Nature 374, 526 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    T. Ishikawa, Int. J. Appl. Ceram. Technol. 1, 49 (2004)CrossRefGoogle Scholar
  4. 4.
    R. Riedel, L. Toma, E. Janssen, J. Nuffer, T. Melz, H. Hanselka, J. Am. Ceram. Soc. 93, 920 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Yang, P. Deschatelets, S.T. Brittain, G.M. Whitesides, Adv. Mater. 13, 54 (2001)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, L.A. Liew, R. Luo, L. An, M.L. Dunn, V.M. Bright, J.W. Daily, R. Raj, Sens. Actuators, A: Phys. 95, 143 (2002)Google Scholar
  7. 7.
    L.A. Liew, R.A. Saravanan, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators, A: Phys. 103, 171 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Kolb, C. Fasel, V. Liebau-Kunzmann, R. Riedel, J. Eur. Ceram. Soc. 26, 3903 (2006)CrossRefGoogle Scholar
  9. 9.
    V. Liebau-Kunzmann, C. Fasel, R. Kolb, R. Riedel, J. Eur. Ceram. Soc. 26, 3897 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Monthioux, O. Delverdier, J. Eur. Ceram. Soc. 16, 721 (1996)CrossRefGoogle Scholar
  11. 11.
    Y.F. Shi, Y. Wan, Y.P. Zhai, R.L. Liu, Y. Meng, B. Tu, D.Y. Zhao, Chem. Mater. 19, 1761 (2007)Google Scholar
  12. 12.
    A. Saha, R. Raj, D.L. Williamson, J. Am. Ceram. Soc. 89, 2188 (2006)Google Scholar
  13. 13.
    L. Miettinen, P. Kekäläinen, T. Turpeinen, J. Hyväluoma, J. Merikoski1, J. Timonen, AIP Adv. 2, 012101 (2012)Google Scholar
  14. 14.
    S.Q. Zeng, A. Hunt, R. Greif, J. Heat Transf. 117, 1055 (1995)Google Scholar
  15. 15.
    X. Fu, R. Viskanta, J.P. Gore, Int. Commun. Heat Mass Transf. 25, 151 (1998)Google Scholar
  16. 16.
    G.S. Wei, Y.S. Liu, X.X. Zhang, F. Yu, X.Z. Du, Int. J. Heat Mass Transf. 54, 2355 (2011)Google Scholar
  17. 17.
    F. Yu, G.S. Wei, X.X. Zhang, K. Chen, Int. J. Thermophys. 27, 293 (2006)ADSGoogle Scholar
  18. 18.
    L.W. Hrubesh, R.W. Pekala, J. Mater. Res. 9, 731 (1994)ADSGoogle Scholar
  19. 19.
    P.J. Burns, C.L. Tien, Int. J. Heat Mass Transf. 22, 929 (1979)ADSGoogle Scholar
  20. 20.
    Q.R. Wu, Q.J. Wu, Y.B. Xu, in Proceedings 9th Asian Thermophys. Properties Conference, Paper No. 109027, Beijing, China, 19–22 Oct 2010Google Scholar
  21. 21.
    G.D. Sorarù, D. Suttor, J. Sol-Gel Sci. Technol. 14, 69 (1999)Google Scholar
  22. 22.
    Y.D. Blum, D.B. Macqueen, H.J. Kleebe, J. Eur. Ceram. Soc. 25, 143 (2005)Google Scholar
  23. 23.
    J.S.Q. Zeng, R. Greif, P. Stevens, M. Ayers, A. Hunt, J. Mater. Res. 11, 687 (1996)ADSGoogle Scholar
  24. 24.
    C.G. Pantano, A.K. Singh, H. Zhang, J. Sol-Gel Sci. Technol. 14, 7 (1999)Google Scholar
  25. 25.
    J. Latournerie, P. Dempsey, D. Hourlier-Bahloul, J.P. Bonnet, J. Am. Ceram. Soc. 89, 1485 (2006)Google Scholar
  26. 26.
    D.R. Bujalski, S. Grigoras, W.L. Lee, G.M. Wieber, G.A. Zank, J. Mater. Chem. 8, 1427 (1998)Google Scholar
  27. 27.
    A.M. Wilson, G. Zank, K. Eguchi, W. Xing, B. Yates, J.R. Dahn, Chem. Mater. 9, 1601 (1997)Google Scholar
  28. 28.
    S.Q. Zeng, A. Hunt, R. Greif, J. Non-Cryst. Solids 186, 264 (1995)ADSGoogle Scholar
  29. 29.
    L. Qiu, D.W. Tang, X.H. Zheng, G.P. Su, Rev. Sci. Instrum. 82, 045106 (2011)Google Scholar
  30. 30.
    L. Qiu, X.H. Zheng, G.P. Su, D.W. Tang, Int. J. Thermophys. (2011). doi: 10.1007/s10765-011-1075-y
  31. 31.
    S.R. Choi, D. Kim, S.H. Choa, S.H. Lee, J.K. Kim, Int. J. Thermophys. 27, 896 (2006)ADSGoogle Scholar
  32. 32.
    G.V. Samsonov, in The Oxide Handbook (Plenum, New York, 1973), p. 122Google Scholar
  33. 33.
    K. Kinoshita, in Carbon-Electrochemical and Physicochemical Properties (Wiley, New York, 1988), p. 12Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • L. Qiu
    • 1
  • Y. M. Li
    • 2
  • X. H. Zheng
    • 1
  • J. Zhu
    • 1
  • D. W. Tang
    • 1
  • J. Q. Wu
    • 2
    • 3
  • C. H. Xu
    • 2
  1. 1.Institute of Engineering ThermophysicsChinese Academy of SciencesBeijing People’s Republic of China
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijing People’s Republic of China
  3. 3.Graduate University of Chinese Academy of SciencesBeijing People’s Republic of China

Personalised recommendations