Advertisement

International Journal of Thermophysics

, Volume 34, Issue 11, pp 2053–2064 | Cite as

Estimation of the Thermodynamic Limit of Overheating for Bulk Water from Interfacial Properties

  • A. R. Imre
  • A. Baranyai
  • U. K. Deiters
  • P. T. Kiss
  • T. Kraska
  • S. E. Quiñones Cisneros
Article

Abstract

The limit of overheating or expanding is an important property of liquids, which is relevant for the design and safety assessment of processes involving pressurized liquids. In this work, the thermodynamic stability limit—the so-called spinodal—of water is calculated by molecular dynamics computer simulation, using the molecular potential model of Baranyai and Kiss. The spinodal pressure is obtained from the maximal tangential pressure within a liquid–vapor interface layer. The results are compared to predictions of various equations of state. Based on these comparisons, a set of equations of state is identified which gives reliable results in the metastable (overheated or expanded) liquid region of water down to \(-55\) MPa.

Keywords

Boiling Equation of state (EOS) Explosivity  Overheating Spinodal Stability limit 

Notes

Acknowledgments

Part of this project was financed by the Hungarian Atomic Energy Authority. A.R. Imre’s stay in Germany was financed by the German Humboldt Foundation. A. Baranyai gratefully acknowledges the support of OTKA grant K84382.

References

  1. 1.
    C.T. Avedisian, J. Phys. Chem. Ref. Data 14, 695 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)Google Scholar
  3. 3.
    A.R. Imre, H.J. Maris, P.R. Williams (eds.), Liquids under Negative Pressure (NATO Science Series, Kluwer, Dordrecht, 2002)Google Scholar
  4. 4.
    P.V. Skripov, A.P. Skripov, Int. J. Thermophys. 31, 816 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R. Thiéry, L. Mercury, J. Geophys. Res. 114, B05205 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A. Poullikkas, Prog. Nucl. Energy 42, 3 (2003)CrossRefGoogle Scholar
  7. 7.
    G.A. Pinhasi, A. Ullman, A. Dayan, Rev. Chem. Eng. 21, 133 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Abbasi, S.A. Abbasi, J. Loss Prevent. Process Ind. 20, 165 (2007)Google Scholar
  9. 9.
    V.P. Skripov, Metastable Liquids (Wiley, New York, 1974)Google Scholar
  10. 10.
    V.G. Baidakov, Sov. Tech. Rev. B Therm. Phys. 5, 1 (1994)Google Scholar
  11. 11.
    S.B. Kiselev, Physica A 269, 252 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    E. Herbert, S. Balibar, F. Caupin, Phys. Rev. E 74, 041603 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    K. Davitt, A. Arvengas, F. Caupin, Europhys. Lett. 90, 16002 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Lienhard, A. Karimi, J. Heat Transfer 103, 61 (1981)CrossRefGoogle Scholar
  15. 15.
    C.E. Cordeiro, J.B. Silva, S. Moss de Oliveira, A. Delfino, J.S. Sá Martins, Int. J. Thermophys. 28, 1269 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M.N. Hasan, M. Monde, Y. Mitsutake, Int. J. Heat Mass Transfer 54, 3226 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    N. Shamsundar, J.H. Lienhard, Nucl. Eng. Des. 141, 269 (1993)CrossRefGoogle Scholar
  18. 18.
    R. Thiéry, L. Mercury, J. Sol. Chem. 38, 893 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Lamome, R. Meignen, Nucl. Eng. Des. 238, 3445 (2008)CrossRefGoogle Scholar
  20. 20.
    E. Roedder, Science 155, 1413 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Green, D.J. Durben, G.H. Wolf, C.A. Angell, Science 249, 649 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    K.I. Shmulovich, L. Mercury, R. Thiéry, C. Ramboz, M. El Mekki, Geochim. Cosmochim. Acta 73, 2457 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    F. Caupin, From Helium to Water: Capillarity and Metastability in Two Exceptional Liquids (Habilitation thesis, École Normale Supérieure, Département de Physique, Paris, France, 2009)Google Scholar
  24. 24.
    I. Polishuk, J. Supercrit. Fluids 58, 204 (2011)CrossRefGoogle Scholar
  25. 25.
    W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    M.N. Hasan, M. Monde, Y. Mitsutake, Int. J. Heat Mass Transfer 54, 2844 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    T. Kraska, Ind. Eng. Chem. Res. 43, 6213 (2004)CrossRefGoogle Scholar
  28. 28.
    U.K. Deiters, T. Kraska, High-Pressure Fluid-Phase Equilibria—Phenomenology and Computation (Elsevier, Amsterdam, 2012)Google Scholar
  29. 29.
    U.K. Deiters, ThermoC project website, http://thermoc.uni-koeln.de/ (2006)
  30. 30.
    NIST Chemistry Webbook, http://webbook.nist.gov/chemistry/ (2011)
  31. 31.
    A. Imre, K. Martinás, L.P.N. Rebelo, J. Non-Equilib. Thermodyn. 23, 351 (1998)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    I. Polishuk, R. Gonzalez, J.H. Vera, H. Segura, Phys. Chem. Chem. Phys. 6, 5189 (2004)CrossRefGoogle Scholar
  33. 33.
    N.N. Das Gupta, S.K. Ghosh, Rev. Mod. Phys. 18, 225 (1946)ADSCrossRefGoogle Scholar
  34. 34.
    P. McMillan, Nat. Mater. 1, 19 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    A.R. Imre, A. Drozd-Rzoska, T. Kraska, S.J. Rzoska, K.W. Wojciechowski, J. Phys. Condens. Matter 20, 244104 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    J.D. van der Waals, in Nobel Lectures–Physics 1901–1921, ed. by S. Lundqvist (Nobel Foundation, Stockholm, 1998), p. 254Google Scholar
  37. 37.
    O. Redlich, J.N.S. Kwong, Chem. Rev. 44, 233 (1949)CrossRefGoogle Scholar
  38. 38.
    U.K. Deiters, Chem. Eng. Sci. 36(1139), 1146 (1981)Google Scholar
  39. 39.
    O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, The GERG-2004 Wide-Range Reference Equation of State for Natural Gases and other Mixtures, GERG Technical Monograph 15 (European Gas Research Group (GERG), VDI-Verlag, Düsseldorf, 2007)Google Scholar
  40. 40.
    H.-W. Xiang, U.K. Deiters, Chem. Eng. Sci. 63, 1490 (2007)CrossRefGoogle Scholar
  41. 41.
    R.J. Speedy, J. Phys. Chem. 86, 982 (1982)CrossRefGoogle Scholar
  42. 42.
    G. Bakker, Z. Phys. Chem. 90, 359 (1915)Google Scholar
  43. 43.
    F. Caupin, Phys. Rev. E. 71, 051605 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    A.R. Imre, T. Kraska, Fluid Phase Equilib. 284, 31 (2009)CrossRefGoogle Scholar
  45. 45.
    A.R. Imre, G. Mayer, G. Házi, R. Rozas, T. Kraska, J. Chem. Phys. 128, 114708 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    F. Römer, A.R. Imre, T. Kraska, J. Phys. Chem. B 113, 4688 (2009)CrossRefGoogle Scholar
  47. 47.
    A.R. Imre, T. Kraska, Physica B 403, 3663 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A.R. Imre, G. Házi, T. Kraska, in Metastable Systems Under Pressure, ed. by S.J. Rzoska, A. Drozd-Rzoska, V. Mazur (NATO Science Series, Springer, Dordrecht, 2009), p. 271Google Scholar
  49. 49.
    A. Baranyai, P.T. Kiss, J. Chem. Phys. 135, 234110 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    P.T. Kiss, M. Darvas, A. Baranyai, P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    P.T. Kiss, A. Baranyai, J. Chem. Phys. 136, 104109 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    J.H. Irving, J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. R. Imre
    • 1
    • 2
  • A. Baranyai
    • 3
  • U. K. Deiters
    • 2
  • P. T. Kiss
    • 3
  • T. Kraska
    • 2
  • S. E. Quiñones Cisneros
    • 4
  1. 1.HAS Centre for Energy ResearchBudapestHungary
  2. 2.Institute for Physical ChemistryUniversity of CologneCologneGermany
  3. 3.Institute of ChemistryEötvös UniversityBudapest 112Hungary
  4. 4.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations