International Journal of Thermophysics

, Volume 34, Issue 4, pp 567–574 | Cite as

Effect of Previous Milling of Precursors on Magnetoelectric Effect in Multiferroic \({\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}}\) Ceramic

  • J. DerczEmail author
  • J. Bartkowska
  • G. Dercz
  • P. Stoch
  • M. Łukasik


\(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\) magnetoelectric (ME) ceramics have been synthesized and investigated. The ME effect can be described as an induced electric polarization under an external magnetic field or an induced magnetization under an external electric field. The materials in the ME effect are called ME materials, and they are considered to be a kind of new promising materials for sensors, processors, actuators, and memory systems. Multiferroics, the materials in which both ferromagnetism and ferroelectricity can coexist, are the prospective candidates which can potentially host the gigantic ME effect. \(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\), an Aurivillius compound, was synthesized by sintering a mixture of \(\mathrm{Bi}_{2}\mathrm{O}_{3}, \mathrm{Fe}_{2}\mathrm{O}_{3}\), and \(\mathrm{TiO}_{2}\) oxides. The precursor materials were prepared in a high-energy attritorial mill for (1, 5, and 10) h. The orthorhombic \(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\) ceramics were obtained by a solid-state reaction process at 1313 K. The ME voltage coefficient (\(\alpha _\mathrm{ME}\)) was measured using the dynamic lock-in method. The highest ME voltage coefficient (\(\alpha _\mathrm{ME} = 8.28\,\text{ mV }{\cdot }\text{ cm }^{-1}{\cdot }\text{ Oe }^{-1})\) is obtained for the sample milled for 1 h at \(H_\mathrm{DC }= 4\) Oe (1 Oe = 79.58 \(\text{ A }{\cdot }\text{ m }^{-1})\).


\(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\) Dielectric properties Ferroelectric High-energy ball milling Magnetoelectric (ME) effect Sintering 


  1. 1.
    C.W. Nan, Phys. Rev. B 50, 6082 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    N. Cai, J. Zhai, L. Liu, Y. Lin, C. Nan, Mater. Sci. Eng. B 99, 21 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Curie, J. Phys. 3, 393 (1894)zbMATHGoogle Scholar
  4. 4.
    D.N. Astrov, Sov. Phys. JETP 11, 708 (1960)Google Scholar
  5. 5.
    D.N. Astrov, Sov. Phys. JETP 13, 729 (1961)Google Scholar
  6. 6.
    G.T. Rado, V.J. Folen, Phys. Rev. Lett. 7, 310 (1961)ADSCrossRefGoogle Scholar
  7. 7.
    V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rev. Lett. 6, 607 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    X.Y. Zhang, J.Y. Dai, C.W. Lai, Prog. Solid State Chem. 33, 147 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Noda, M. Akaki, F. Nakamura, D. Akahoshi, H. Kuwahara, J. Magn. Magn. Mater. 310, 1162 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Zvezdin, A.M. Kadomtseva, S.S. Krotov, A.P. Pyatakov, YuF Popov, G.P. Vorob’ev, J. Magn. Magn. Mater. 300, 224 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R. Grössinger, G.V. Duong, R. Sato-Turtelli, J. Magn. Magn. Mater. 320, 1972 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Fiebig, J. Phys. D Appl. Phys. 38, 123 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    G. Dercz, J. Dercz, K. Prusik, A. Hanc, L. Pająk, J. Ilczuk, Arch. Metall. Mater. 54, 741 (2009)Google Scholar
  14. 14.
    J.A. Bartkowska, J. Ilczuk, Int. J. Thermophys. 31, 1 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J. Dercz, A. Starczewska, G. Dercz, Int. J. Thermophys. 32, 746 (2011)Google Scholar
  16. 16.
    R.J. Hill, C.J. Howard, J. Appl. Cryst. 20, 467 (1987)Google Scholar
  17. 17.
    J. Dercz, G. Dercz, K. Prusik, B. Solecka, A. Starczewska, J. Ilczuk, Int. J. Thermophys. 31, 42 (2010)Google Scholar
  18. 18.
    G. Dercz, J. Rymarczyk, A. Hanc, K. Prusik, R. Babilas, L. Pająk, J. Ilczuk, Acta Phys. Pol. A 114, 1623 (2008)ADSGoogle Scholar
  19. 19.
    L. Fuentes, M. Garcia, J. Matutes-Aquino, D. Rios-Jara, J. Alloys Compd. 369, 1 (2004)CrossRefGoogle Scholar
  20. 20.
    G.A. Gehring, Ferroelectrics 161, 275 (1994)CrossRefGoogle Scholar
  21. 21.
    S.A. Kizaev, G.D. Sultanov, F.A. Mirshili, Sov. Phys. Solid State 15, 214 (1973)Google Scholar
  22. 22.
    A. Srinivas, S.V. Suryanarayana, G.S. Kumar, Kumar M. Mahesh, J. Phys. Condens. Matter 11, 3335 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Dercz
    • 1
    Email author
  • J. Bartkowska
    • 1
  • G. Dercz
    • 2
  • P. Stoch
    • 3
  • M. Łukasik
    • 3
  1. 1.Department of Material ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Institute of Material ScienceUniversity of SilesiaChorzówPoland
  3. 3.Faculty of Materials Science and Ceramics, Academy of Mining and MetallurgyCracowPoland

Personalised recommendations