International Journal of Thermophysics

, Volume 34, Issue 8–9, pp 1673–1682 | Cite as

Photoacoustic Monitoring of the Macroscopic Orientational Order in Disperse Red 1 Azo-Dye-Based Dissolutions

  • V. Torres-Zúñiga
  • R. Castañeda-Guzmán
  • O. G. Morales-Saavedra


The polarized pulsed-laser photoacoustic (PLPA) methodology was implemented to characterize the macroscopic molecular orientational order as a function of the applied electric field in an azo-dye-based dissolution. It is shown in this work that photoacoustic signals are highly sensitive to the material anisotropy when PLPA analyses are performed. In particular, the macroscopic molecular symmetries and structural organization of rod-like azo-dyes (Disperse Red 1: DR1) prepared in heavily loaded toluene dissolutions, have been studied. Experiments evidence unambiguous information concerning the molecular organization detected via simultaneous optical transmission and PLPA measurements. Indeed, in the electrically poled stage, it is shown that the Fourier, correlation, and root-mean-square analyses performed on the PLPA signals, as functions of the incident linear polarization of the laser source (orthogonal states \(P_\mathrm{in}\) and \(S_\mathrm{in}\), respectively), reveal the main optical axis, symmetry, and structure of the aligned compounds in the liquid phase. An important advantage of the PLPA method is that it can be implemented with poor or null optical transmission anisotropic materials.


EFISH-Cell Linear dichroism Molecular ordering  Opto-acoustics Push–pull chromophores 



V.T.Z. acknowledges financial support from the ICyTDF. R.C.G. acknowledges financial support from PPAPIIT-DGAPA-UNAM (grant: IT-115011) and Conacyt (grant: 82919). O.G.M.S. acknowledges financial support from PAPIIT-DGAPA-UNAM (grant: IN-115508) and from the DAAD academic organization (Germany).


  1. 1.
    V. Torres-Zúñiga, O.G. Morales-Saavedra, E. Rivera, J.O. Flores-Flores, J.G. Bañuelos, R. Ortega-Martínez, J. Mod. Opt. 57, 1 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Flämmich, J. Frischeisen, D.S. Setz, D. Michaelis, B.C. Krummacher, T.D. Schmidt, W. Brütting, N. Danz, Org. Electron. 12, 10 (2011)Google Scholar
  3. 3.
    M.M.G. Krishna, N. Periasamy, Chem. Phys. Lett. 298, 4 (1998)CrossRefGoogle Scholar
  4. 4.
    A. Franco, G. Brusatin, M. Guglielmi, G. Stracci, De Matteis, M. Casalboni, H. Detert, B. Grimm, S. Schrader, J. Non-Cryst. Solids 356, 33 (2010)Google Scholar
  5. 5.
    R.E. Newman, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, Oxford, 2005)Google Scholar
  6. 6.
    P.A. Chollet, Y. Levy, in Organic Thin Films for Waveguiding Nonlinear Optics, ed. by F. Kajzar, J.D. Swalen (Gordon and Breach Publishers, New York, 1996), pp. 457–505Google Scholar
  7. 7.
    A. Marino, E. Santamato, N. Bennis, X. Quintana, J.M. Otón, V. Tkachenko, G. Abbate, Appl. Phys. Lett. 94, 1 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Torres-Zúñiga, R. Castañeda-Guzmán, O.G. Morales-Saavedra, M. Zepahua-Camacho, Opt. Exp. 16, 25 (2008)CrossRefGoogle Scholar
  9. 9.
    V. Torres-Zúñiga, R. Castañeda-Guzmán, O.G. Morales-Saavedra, A.L. Pérez-Martínez, T. Ogawa, Opt. Laser Eng. 49, 12 (2011)CrossRefGoogle Scholar
  10. 10.
    K.D. Singer, S.F. Hubbard, A. Schober, L.M. Hayden, K. Johnson, in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, ed. by M.G. Kuzyk, C.W. Dirk (Marcel Dekker, New York, 1998), pp. 311–347Google Scholar
  11. 11.
    A. Pérez-Pacheco, R. Castañeda-Guzmán, C. Oliva Montes De Oca, A. Esparza-García, S.J. Pérez Ruiz, Appl. Phys. A: Mater. Sci. Process. 102, 699 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. Torres-Zúñiga
    • 1
  • R. Castañeda-Guzmán
    • 1
  • O. G. Morales-Saavedra
    • 1
  1. 1.Centro de Ciencias Aplicadas y Desarrollo TecnológicoUniversidad Nacional Autónoma de México MexicoMexico

Personalised recommendations