International Journal of Thermophysics

, Volume 34, Issue 8–9, pp 1385–1397 | Cite as

Optimized Photothermal Lens Determination of Nonlinear Absorption



An optimized pump–probe mode-mismatched photothermal lens experiment aimed at determination of nonlinear absorption of an optical sample is reported. The pump beam generates a local thermal gradient or thermal lens that is tested by the probe light. The pump beam is tightly focused, and the probe beam is highly collimated. Changes in the probe light transmission through a small aperture located at some distance from the sample provide the signal. Scanning of the sample around the focal point yields a single-peaked Z-scan signature with a width several times larger than the pump Rayleigh range for linear absorption. If nonlinear absorption is dominant, the width of the peak is significantly smaller and of the order of the Rayleigh range of the pump field. If linear and nonlinear absorption are present simultaneously, a double-peaked Z-scan signature is obtained. In this situation, the linear and nonlinear absorption contributions can be easily separated and compared to each other for calibration purposes. Using the known values of linear absorption, nonlinear absorption coefficients can be estimated with good accuracy. The method is tested by studying nonlinear absorption in nitrobenzene and iron oxide water colloids. The values of the effective nonlinear absorption coefficients are determined. The physical origin of nonlinear absorption in both types of samples is also discussed.


Nonlinear absorption Photothermal lens Two-photon absorption Z-scan 



This research has been possible thanks to the support of the National Science Foundation (NSF-CREST grant 0630388 and NSF-MRI grant 0922587) and of the National Aeronautics and Space Administration (NASA URC 5 grant NNX09AU90A). The author would like to thank Dr. Raymond Edziah from the Department of Physics and Pre-Engineering at Delaware State University for critical reading of the manuscript.


  1. 1.
    F.J. McClung, R.W. Hellwarth, J. Appl. Phys. 33, 828 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, Nature 398, 51 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 15, 132 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Soileau, A.L. Smirl, S. Guha, T.F. Bogess, Opt. Eng. 24, 613 (1985)Google Scholar
  7. 7.
    L.W. Tutt, T.F. Boggess, Prog. Quantum Electron. 17, 299 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yamaoka, K. Fujiwara, T. Takamatsu, Proc. SPIE 6631, 663102 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Rumi, J.W. Perry, Adv. Opt. Photonics 2, 451 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van-Stryland, IEEE J. Quantum Electron. 26, 760 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Twarowski, D.S. Kliger, Chem. Phys. 20, 253 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Twarowski, D.S. Kliger, Chem. Phys. 20, 259 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    J. Castillo, V. Kozich, A. Marcano, Opt. Lett. 19, 171 (1994)Google Scholar
  14. 14.
    V.P. Kozich, A. Marcano, F.E. Hernández, J. Castillo, Appl. Spec. 48, 1419 (1994)Google Scholar
  15. 15.
    M. Falconieri, J. Opt. A 1, 662 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    L. Rodriguez, M. Chiesa, J. Opt. 14, 015204 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    A. Marcano, C. Loper, Appl. Phys. Lett. 78, 3415 (2001)Google Scholar
  18. 18.
    A. Marcano, C. Loper, N. Melikechi, J. Opt. Soc. Am. 19, 119 (2002)Google Scholar
  19. 19.
    A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, J. Opt. Soc. Am. B 23, 1408 (2006)Google Scholar
  20. 20.
    A. Marcano, K. Williams, N. Melikechi, Opt. Commun. 281, 2598 (2008)Google Scholar
  21. 21.
    A. Marcano, F. Delima, Y. Markushin, N. Melikechi, J. Opt. Soc. Am. 28, 281 (2011)Google Scholar
  22. 22.
    J. Shen, L. Baesso, R.D. Snook, J. Appl. Phys. 75, 3738 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    A. Gnoli, L. Razzari, M. Righini, Opt. Express 13, 7976 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    S.M. Mian, S.B. McGee, N. Melikechi, Opt. Commun. 207, 339 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Optical Science Center for Applied Research and Department of Physics and Pre-EngineeringDelaware State UniversityDoverUSA

Personalised recommendations