Full-Potential Calculation of Structural, Electronic, and Thermodynamic Properties of Fluoroperovskite \(\text{ CsMF}_{3}\) (M = Be and Mg)
Abstract
The structural and electronic properties of the cubic fluoroperoveskite \(\text{ CsBeF}_{3}\) and \(\text{ CsMgF}_{3}\) have been investigated using the full-potential-linearized augmented plane wave method within the density functional theory. The exchange-correlation potential was treated with the local density approximation and the generalized gradient approximation. The calculations of the electronic band structures show that \(\text{ CsBeF}_{3 }\) has an indirect bandgap, whereas \(\text{ CsMgF}_{3}\) has a direct bandgap. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effect of pressure \(P\) and temperature \(T\) on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for \(\text{ CsBeF}_{3}\) and \(\text{ CsMgF}_{3}\) compounds are investigated for the first time.
Keywords
Density functional theory (DFT) Electronic properties Fluoroperoveskite Thermodynamic propertiesReferences
- 1.L.L. Hench, L.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), pp. 244–247Google Scholar
- 2.O. Muller, R. Roy, The Major Ternary Structural Families (Springer, New York, 1974)Google Scholar
- 3.
- 4.G. Horsch, H. Paus, J. Opt. Commun. 60, 69 (1986)ADSCrossRefGoogle Scholar
- 5.S. Sugano, R.G. Shulman, Phys. Rev. 130, 517 (1963)ADSCrossRefGoogle Scholar
- 6.B. Kleinman, M. Karplus, Phys. Rev. B 3, 24 (1971)ADSCrossRefGoogle Scholar
- 7.T.F. Soules, J.W. Richardson, D.M. Vaught, Phys. Rev. B 3, 2186 (1971)ADSCrossRefGoogle Scholar
- 8.T.F. Soules, E.J. Kelly, D.M. Vaught, J.W. Richardson, Phys. Rev. B 6, 1519 (1972)ADSCrossRefGoogle Scholar
- 9.L.F. Mattheiss, Phys. Rev. B 6, 4718 (1972)ADSCrossRefGoogle Scholar
- 10.R.G. Shulman, Y. Yafet, P. Eisenberger, W.E. Blumberg, Proc. Natl. Acad. Sci. USA 73, 1384 (1976)ADSCrossRefGoogle Scholar
- 11.R. Hua, B. Lei, D. Xie, C. Shi, J. Solid State Chem. 175, 284 (2003)ADSCrossRefGoogle Scholar
- 12.K. Shimamura, H. Sato, A. Bensalah, V. Sudesh, H. Machida, N. Sarukura, T. Fukuda, Cryst. Res. Technol. 36, 801 (2001)CrossRefGoogle Scholar
- 13.P. Berastegui, S. Hull, S.-G. Eriksson, J. Phys. Condens. Matter 13, 5077 (2001)ADSCrossRefGoogle Scholar
- 14.J. Julliard, J. Nouet, Rev. Phys. Appl. 10, 325 (1975)CrossRefGoogle Scholar
- 15.R.R. Daniels, G. Margaritondo, R.A. Heaton, C.C. Lin, Phys. Rev. B 27, 3878 (1983)ADSCrossRefGoogle Scholar
- 16.A.S. Verma, V.K. Jindal, J. Alloys Compd. 485, 514 (2009)CrossRefGoogle Scholar
- 17.J. Tong, C. Lee, M.-H. Whangbo, R.K. Kremer, A. Simon, J. Köhler, Solid State Sci. 12, 680 (2010)ADSCrossRefGoogle Scholar
- 18.P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)MathSciNetADSCrossRefGoogle Scholar
- 19.K. Schwarz, P. Blaha, G.K.H. Masden, Comput. Phys. Commun. 147, 71 (2002)ADSMATHCrossRefGoogle Scholar
- 20.J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
- 21.J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
- 22.R.A. Robie, J.L. Edwards, J. Appl. Phys. 37, 2659 (1966)ADSCrossRefGoogle Scholar
- 23.M.A. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 158, 57 (2004)ADSMATHCrossRefGoogle Scholar
- 24.M.A. Blanco, A. Martín Pendás, J. Mol. Struct. THEOCHEM 368, 245 (1996)CrossRefGoogle Scholar
- 25.M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, A. Martín Pendás, Phys. Rev. B 66, 144112 (2002)ADSCrossRefGoogle Scholar
- 26.E. Francisco, J.M. Recio, M.A. Blanco, A. Martín Pendás, J. Phys. Chem. 102, 1595 (1998)CrossRefGoogle Scholar
- 27.E. Francisco, M.A. Sanjurjo, Phys. Rev. B 63, 09410 (2001)CrossRefGoogle Scholar
- 28.A. Bouhemadou, R. Khenata, M. Chegaar, Eur. Phys. J. B 56, 209 (2007)ADSCrossRefGoogle Scholar
- 29.R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952)ADSCrossRefGoogle Scholar
- 30.F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)MathSciNetADSMATHCrossRefGoogle Scholar
- 31.G. Wu, R. Hoppe, Z. Anorg, Allg. Chem. 514, 92 (1984)CrossRefGoogle Scholar
- 32.G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, A. Delin, B. Johansson, Phys. Rev. B 76, 014107 (2007)ADSCrossRefGoogle Scholar
- 33.G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, N.E. Christensen, B. Johansson, Phys. Rev. B 81, 075105 (2010)ADSCrossRefGoogle Scholar
- 34.L.F. Mattheiss, Phys. Rev. B 2, 3918 (1970)ADSCrossRefGoogle Scholar
- 35.L.F. Mattheiss, Phys. Rev. 181, 987 (1969)ADSCrossRefGoogle Scholar
- 36.M. Sahnoun, M. Zbiri, C. Daul, R. Khenata, H. Baltache, M. Driz, Mater. Chem. Phys. 91, 185 (2005)CrossRefGoogle Scholar
- 37.Z.F. Hou, Physica B 403, 2624 (2008)ADSCrossRefGoogle Scholar
- 38.G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)ADSCrossRefGoogle Scholar
- 39.P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)ADSCrossRefGoogle Scholar
- 40.A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)Google Scholar