International Journal of Thermophysics

, Volume 33, Issue 10–11, pp 2139–2144

Photopyroelectric Microscopy of Porous Ceramics

  • J. J. A. Flores-Cuautle
  • A. Cruz-Orea
  • E. Suaste-Gomez
Article

Abstract

Porous ceramics has capital importance in a wide variety of applications as in the case of gas and humidity sensors; in these applications an important fact is that the ceramic structure must insure intercommunication between one side and the other. Several techniques has been used in order to have information about the ceramic structure; among these, photopyroelectric (PPE) spectroscopy is an option to be used in porous ceramic structure characterization. In PPE microscopy, an image of the sample thermal response can be obtained by 2D scanning of a focused beam across a surface, which yields localized information on the possible presence of subsurface features which is an important property of porous ceramics. Recently porous ceramics based on barium titanate mixed with silicon dioxide have been developed to be used as gas and humidity sensors. By the use of PPE microscopy, porous ceramics were analyzed with two different resolutions as a result of the variation of the light modulation frequency. The light modulation frequency is related not only to scanning depth, but also to thermal scale length which gives us the minimum sample length that can be studied and is also related with its thermal diffusion length.

Keywords

Photopyroelectric technique Porous ceramic Thermal scale length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar-Mendez M.A., Martin-Martinez E.S., Morales J.E., Cruz-Orea A., Jaime-Fonseca M.R.: Anal. Sci. 23, 457 (2007)CrossRefGoogle Scholar
  2. 2.
    Cruz-Orea A., Tomás S.A., Guerrero-Zuñiga A., Rodríguez-Dorantes A.: Int. J. Thermophys. 25, 603 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Jiménez Pérez J.L., Cruz-Orea A., Ramon-Gallegos E., Gutierrez Fuentes R., Sanchez Ramirez J.F.: Eur. Phys. J. Spec. Top. 153, 353 (2008)CrossRefGoogle Scholar
  4. 4.
    Quimby R.S.: Appl. Phys. Lett. 45, 1037 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    Rosencwaig A., White R.M.: Appl. Phys. Lett. 38, 165 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    Favro L.D., Kuo P.K., Pouch J.J., Thomas R.L.: Appl. Phys. Lett. 36, 953 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Ballesteros R., Cruz-Orea A., Flores-Cuautle J.J.A., Suaste-Gomez E.: Ferroelectrics 396, 98 (2010)CrossRefGoogle Scholar
  8. 8.
    Briseño-Tepepa B., Jiménez-Peréz J., Saavedra R., González-Ballesteros R., Suaste E., Cruz-Orea A.: Int. J. Thermophys. 29, 2200 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Nagai M., Nishino T., Saeki T.: Sens. Actuators 15, 145 (1988)CrossRefGoogle Scholar
  10. 10.
    Narayan R., Colombo P.: Advances in Bioceramics and Porous Ceramics. Wiley, Weinheim (2009)CrossRefGoogle Scholar
  11. 11.
    Saito S., Miyayama M., Koumoto K., Yanagida H.: J. Am. Ceram. Soc. 68, 40 (1985)CrossRefGoogle Scholar
  12. 12.
    J.J.A. Flores Cuautle, M. Acuautla Meneses, E. Suaste Gomez, Presented at the International Materials Research Congress, Cancun, Mexico, 2009 (unpublished)Google Scholar
  13. 13.
    Acuautla-Meneses M.I., Flores-Cuautle J.J.A., Suaste-Gómez E.: Ferroelectrics 423, 111 (2011)CrossRefGoogle Scholar
  14. 14.
    Rice R.W.: Porosity of Ceramics. Marcel Dekker, New York (1998)Google Scholar
  15. 15.
    Moulson A.J., Herbert J.M.: Electroceramics. Wiley, New York (2003)CrossRefGoogle Scholar
  16. 16.
    Kingery W.D., Bowen H.K., Uhlmann D.R.: Introduction to Ceramics. Wiley, New York (1976)Google Scholar
  17. 17.
    Rosencwaig A., Busse G.: Appl. Phys. Lett. 36, 725 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    George S.D., Komban R., Warrier K.G.K., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G.: Philos. Mag. 90, 717 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Sánchez-Lavega A., Salazar A., Ocariz A., Pottier L., Gomez E., Villar L.M., Macho E.: Appl. Phys. A, Mater. Sci. Proc. 65, 15 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    George S., Komban R., Warrier K., Radhakrishnan P., Nampoor V., Vallabhan C.: Int. J. Thermophys. 28, 123 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Todorovic, D. Valiljevis-Radovic, A.I. Bojicic, V.B. Pavlovic, B.D. Stojanovic, M.M. Ristic, in Proceedings of 10th International Conference on Photoacoustic and Photothermal Phenomena, ed. by F. Scudieri, M. Bertolotti, AIP Conf. Proc. 463, Rome (1999), pp. 348–350Google Scholar
  22. 22.
    Calderón A., Alvarado-Gil J.J., Gurevich Y.G., Cruz-Orea A., Delgadillo I., Vargas H., Miranda L.C.M.: Phys. Rev. Lett. 79, 5022 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Touloukian Y.S.: Thermophysical Properties of Matter. Springer, New York (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • J. J. A. Flores-Cuautle
    • 1
  • A. Cruz-Orea
    • 2
  • E. Suaste-Gomez
    • 1
  1. 1.Department of Electrical EngineeringCentro de Investigación y Estudios Avanzados del Instituto Politécnico NacionalSan Pedro ZacatencoMéxico
  2. 2.Department of PhysicsCentro de Investigación y Estudios Avanzados del Instituto Politécnico NacionalMéxicoMéxico

Personalised recommendations