International Journal of Thermophysics

, Volume 33, Issue 10–11, pp 2046–2054 | Cite as

“Dark” Excited States of Diphenylacetylene Studied by Nonresonant Two-Photon Excitation Optical-Probing Photoacoustic Spectroscopy

Article

Abstract

Optical probing photoacoustic spectroscopy (OPPAS), a photothermal calorimetric technique, was applied to investigate one-photon forbidden “dark” electronically excited singlet states of diphenylacetylene (DPA), belonging to the D2h point group. When 502 nm light from a pulsed OPO laser was focused into a DPA hexane solution, an acoustic wave was detected as a transient angular deflection of the probe beam (He–Ne laser). The laser power dependence of the OPPAS signal was estimated to be 1.9 ± 0.2, suggesting two-photon absorption for acoustic generation. With the OPPAS technique, we successfully obtained a nonresonant two-photon absorption spectrum of DPA in solution for the first time. The two-photon allowed 11B3g and 21Ag states were found to be above the one-photon allowed 11B1u state. These results show that OPPAS is a highly sensitive technique applicable to two-photon absorption spectral measurements of nonfluorescent species.

Keywords

Diphenylacetylene Optical probing photoacoustic spectroscopy Quantum chemical calculation Two-photon absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Devadoss C., Bharathi P., Moore S.: J. Am. Chem. Soc. 118, 9635 (1996)CrossRefGoogle Scholar
  2. 2.
    Shortreed M.R., Swallen S.F., Shi Z.-Y., Tan W., Xu Z., Devadoss C., Moore J.S., Kopelman R.: J. Phys. Chem. B 101, 6318 (1997)CrossRefGoogle Scholar
  3. 3.
    Melinger J.S., Pan Y., Kleiman V.D., Peng Z., Davis B.L., McMorrow D., Lu M.: J. Am. Chem. Soc. 124, 12002 (2002)CrossRefGoogle Scholar
  4. 4.
    Swager T.M.: Acc. Chem. Res. 31, 201 (1998)CrossRefGoogle Scholar
  5. 5.
    Chen J., Reed M.A., Rawlett A.M., Tour J.M.: Science 286, 1550 (1999)CrossRefGoogle Scholar
  6. 6.
    Ambroise A., Kirmair C., Wanger R.W., Loewe R.S., Bocian D.F., Holten D., Lindsey J.S.: J. Org. Chem. 67, 3811 (2002)CrossRefGoogle Scholar
  7. 7.
    Holten D., Bocian D.F., Lindsey J.S.: Acc. Chem. Res. 25, 57 (2002)CrossRefGoogle Scholar
  8. 8.
    Audebert P., Kamada K., Matsunaga K., Ohta K.: Chem. Phys. Lett. 367, 62 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Slepkov A.D., Hegmann F.A., Tykwinski R.R., Kamada K., Ohta K., Marsden J.A., Spitler E.L., Miller J.J., Haley M.M.: Opt. Lett. 31, 3315 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Kamada K., Ohta K., Iwase Y., Kondo K.: Chem. Phys. Lett. 372, 386 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Ohta K., Kamada K.: J. Chem. Phys. 124, 124303 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Okuyama K., Hasegawa T., Ito M., Mikami N.: J. Phys. Chem. 88, 1711 (1984)CrossRefGoogle Scholar
  13. 13.
    Borst D.R., Chou S.G., Pratt D.W.: Chem. Phys. Lett. 343, 28 (2001)CrossRefGoogle Scholar
  14. 14.
    Hirata Y., Okada T., Mataga N.: J. Phys. Chem. 96, 6559 (1992)CrossRefGoogle Scholar
  15. 15.
    Hirata Y., Okada T.: Chem. Phys. Lett. 209, 397 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Hirata Y., Okada T., Nomoto T.: Chem. Phys. Lett. 293, 371 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Hirata Y.: Bull. Chem. Soc. Jpn. 72, 1647 (1999)CrossRefGoogle Scholar
  18. 18.
    Ishibashi T., Hamaguchi H.: J. Phys. Chem. A 102, 2263 (1998)CrossRefGoogle Scholar
  19. 19.
    Ishibashi T., Okamoto H., Hamaguchi H.: Chem. Phys. Lett. 325, 212 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Nomoto T., Ishibashi T., Okamoto H., Hamaguchi H.: J. Mol. Struct. 735(736), 197 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: J. Phys. Chem. A 102, 5769 (1998)CrossRefGoogle Scholar
  22. 22.
    Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: Chem. Phys. Lett. 303, 201 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: J. Chem. Phys. 114, 1775 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Nagano Y., Ikoma T., Akiyama K., Tero-Kubota S.: J. Am. Chem. Soc. 125, 14103 (2003)CrossRefGoogle Scholar
  25. 25.
    Ferrante C., Kensy U., Dick B.: J. Phys. Chem. 97, 13457 (1993)CrossRefGoogle Scholar
  26. 26.
    Gutmann M., Gudipati M., Schronzart P.-F., Hohlneicher G.: J. Phys. Chem. 96, 2433 (1992)CrossRefGoogle Scholar
  27. 27.
    Göller A., Klemm E., Egbe D.A.M.: Int. J. Quantum Chem. 84, 86 (2001)CrossRefGoogle Scholar
  28. 28.
    Zgierski M.Z., Lim E.C.: Chem. Phys. Lett. 387, 352 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Li Y., Zhao J., Yin X., Liu H., Yin G.: Phys. Chem. Chem. Phys. 9, 1186 (2007)CrossRefGoogle Scholar
  30. 30.
    Arnbjerg J., Johnsen M., Frederiksen P.K., Braslavsky S.E., Ogilby P.R.: J. Phys. Chem. A 110, 7375 (2006)CrossRefGoogle Scholar
  31. 31.
    Marcano A., Williams K., Melikechi N.: Opt. Commun. 281, 2598 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Tam A.C., Patel C.K.N.: Appl. Opt. 18, 3348 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    Tam A.C.: Rev. Mod. Phys. 58, 381 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    Tam A.C., Leung W.P.: Phys. Rev. Lett. 53, 560 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    Sullivan B., Tam A.C.: J. Acoust. Soc. Am. 75, 437 (1984)ADSCrossRefGoogle Scholar
  36. 36.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, K.N. Staroverov, K.N. Kobayashi, K.N. Normand, K.N. Raghavachari, K.N. Rendell, K.N. Burant, K.N. Iyengar, K.N. Tomasi, K.N. Cossi, K.N. Rega, K.N. Millam, K.N. Klene, K.N. Knox, K.N. Cross, K.N. Bakken, K.N. Adamo, K.N. Jaramillo, K.N. Gomperts, K.N. Stratmann, K.N. Yazyev, K.N. Austin, K.N. Cammi, K.N. Pomelli, K.N. Ochterski, K.N. Martin, K.N. Morokuma, K.N. Zakrzewski, K.N. Voth, K.N. Salvador, K.N. Dannenberg, K.N. Dapprich, K.N. Daniels, K.N. Farkas, K.N. Foresman, K.N. Ortiz, K.N. Cioslowski, K.N. Fox, Gaussian 09, Revision A.2 (Gaussian Inc.,Wallingford, CT, 2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Biological ScienceAoyama Gakuin UniversitySagamihara, KanagawaJapan
  2. 2.Department of Chemistry and Materials ScienceTokyo Institute of TechnologyMeguro-ku, TokyoJapan
  3. 3.Graduate School of Science and TechnologyNiigata UniversityNishi-ku, NiigataJapan
  4. 4.CREST, Japan Science and Technology AgencyKawaguchiJapan

Personalised recommendations