Advertisement

International Journal of Thermophysics

, Volume 34, Issue 4, pp 725–735 | Cite as

Temperature Distributions in Piezoelectric Photothermal Spectroscopy

  • J. Zakrzewski
  • M. Maliński
  • K. Strzałkowski
Open Access
Article

Abstract

Piezoelectric photothermal spectroscopy is a method in which the stress and strain of a sample due to the absorption of electromagnetic radiation is detected by a piezoelectric transducer. The temperature distribution in the sample is the basis to obtain the theoretical amplitude and phase of photothermal piezoelectric spectra. In contrast to microphone detection, which needs only the temperature at one of the sample surfaces, in the piezoelectric one, it is necessary to know the spatial temperature distribution. The distributions given by Blonskij and by the modified interferential model of Malinski are applied. The influence of defect states in a volume and at the surfaces on the character of the amplitude and phase piezoelectric spectra is analyzed. The comparison of these approximate models and the two-layer one of Fernelius is presented.

Keywords

Photothermal spectroscopy Piezoelectric detection Semiconductors 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Wang P., Nakagawa T., Fukuyama A., Maeda K., Iwasa Y., Ozeki M., Akashi Y., Ikari T.: Sci. Eng. C 26, 826 (2006)CrossRefGoogle Scholar
  2. 2.
    Fukuyama A., Sakamoto S., Sonoda S., Wang P., Sakai K., Ikari T.: Thin Solid Films 112, 511 (2006)Google Scholar
  3. 3.
    Sakai K., Kakeno T., Ikari T., Shirakata S., Sakemi T., Awai K., Yamamoto T.: J. Appl. Phys. 99, 043508 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Yoshino K., Komaki H., Kakeno T., Akaki Y., Ikari T.: J. Phys. Chem. Solids 64, 1839 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Hoshimiya T.: NDT & E Int. 32, 133 (1999)CrossRefGoogle Scholar
  6. 6.
    Jackson W., Amer N.M.: J. Appl. Phys. 51, 3343 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    Blonskij I.V., Thoryk V.A., Shendeleva M.L.: J. Appl. Phys. 79, 3512 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Bennett C. Jr., Patty R.R.: Appl. Opt. 21, 49 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Maliński M.: Arch. Acoust. 27, 217 (2002)Google Scholar
  10. 10.
    Rosencwaig A., Gersho A.: J. Appl. Phys. 47, 64 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    Fernelius N.: J. App. Phys. 51, 650 (1980)ADSCrossRefGoogle Scholar
  12. 12.
    Timoshenko S.P., Goodier J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)MATHGoogle Scholar
  13. 13.
    Katz A.M.: Theory of Elasticity. GITTL, Moscow (1956)Google Scholar
  14. 14.
    Pankove J.I.: Optical Processes in Semiconductors. Dover, New York (1976)Google Scholar
  15. 15.
    Maliński M., Zakrzewski K., Strzałkowski J.: Int. J. Thermophys. 28, 299 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Zakrzewski J., Maliński M., Strzałkowski K., Madaj D., Firszt F., Łęgowski S., Męczyńska H.: Int. J. Thermophys. 33, 733 (2012)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Instytut FizykiUniwersytet Mikołaja KopernikaToruńPoland
  2. 2.Department of ElectronicsTechnical University of KoszalinKoszalinPoland

Personalised recommendations