International Journal of Thermophysics

, Volume 33, Issue 10–11, pp 2021–2025 | Cite as

Role of Carotenoids in Photosystem II (PSII) Reaction Centers

  • Silvia E. BraslavskyEmail author
  • Alfred R. Holzwarth


A photoprotection mechanism operative in closed reaction centers (RCs) is proposed, where–as a consequence of the negative charge on the quinone QA-triplet 3Chl is formed by the radical pair mechanism on the accessory Chl of the normally inactive D2 branch where it can be subsequently quenched by the spatially close β-carotene in the D2 branch. Whereas β-carotene in the D1 branch is more than 17 Å away from the accessory D1-chlorophyll (\({{\rm Chl}_{\rm accD_1})}\) and, therefore, cannot quench the Chl triplet, the D2-carotene is only 13.2 Å away from \({{\rm Chl}_{\rm accD_2}}\) . We propose that the D2 branch becomes active in electron transfer and thus plays a photoprotective role when the intact RCs are closed under high photon fluence conditions. This interpretation allows combining many seemingly inconsistent observations in the literature and reveals the so far “elusive” RC triplet quenching mechanism in PSII. Based on laser-induced optoacoustic studies, an important structural role is assigned to the β-carotene in the D1 branch, i.e., this carotene ensures a rigid structure.


Carotenes Photoacoustic calorimetry Photoprotection Photosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McDermott G., Prince S.M., Freer A.A., Hawthornthwalte-Lawless A.M., Papiz M.Z., Cogdell R.J., Isaacs N.W.: Nature 374, 517 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chan W.: Nature 428, 287 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Pan X.W., Li M., Wan T., Wang L.F., Jia C.J., Hou Z.Q., Zhao X.L., Zhang J.P., Chang W.R.: Nat. Struct. Mol. Biol. 18, 309 (2011)CrossRefGoogle Scholar
  4. 4.
    Loll B., Kern J., Saenger W., Zouni A., Biesiadka J.: Nature 438, 1040 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Umena Y., Kawakami K., Shen J.R., Kamiya N.: Nature 473, 55 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Holzwarth A.R., Müller M.G., Reus M., Nowaczyk M., Sander J., Rögner M.: Proc. Natl. Acad. Sci. USA 103, 6895 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Kamlowski A., Frankemöller L., van der Est A.J., Stehlik D., Holzwarth A.R.: Ber. Bunsen-Ges. Phys. Chem. 100, 2045 (1996)CrossRefGoogle Scholar
  8. 8.
    Yruela I., Churio M.S., Gensch T., Braslavsky S.E., Holzwarth A.R.: J. Phys. Chem. 98, 12789 (1994)CrossRefGoogle Scholar
  9. 9.
    Losi A., Yruela I., Reus M., Holzwarth A.R., Braslavsky S.E.: Photochem. Photobiol. Sci. 3, 722 (2003)CrossRefGoogle Scholar
  10. 10.
    Martínez-Junza V., Szczepaniak M., Braslavsky S.E., Sander J., Nowaczyk M., Rögner M., Holzwarth A.R.: Photochem. Photobiol. Sci. 7, 1337 (2008)CrossRefGoogle Scholar
  11. 11.
    Schmidt P., Gensch T., Remberg A., Gärtner W., Braslavsky S.E., Schaffner K.: Photochem. Photobiol. 68, 754 (1998)Google Scholar
  12. 12.
    Cogdell R.J., Howard T.D., Bittl R., Schlodder E., Geisenheimer I., Lubitz W.: Philos. Trans. R. Soc. London. B 355, 1345 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Max-Planck Institute for Chemical Energy ConversionMülheim an der RuhrGermany

Personalised recommendations