Advertisement

International Journal of Thermophysics

, Volume 33, Issue 4, pp 733–740 | Cite as

Photothermal Investigation of Surface Defects of Pure Semiconducting A2B6 Materials

  • J. Zakrzewski
  • M. Maliński
  • K. Strzałkowski
  • D. Madaj
  • F. Firszt
  • S. Łęgowski
  • H. Męczyńska
Open Access
Article

Abstract

Photoacoustic spectroscopy is a sensitive and useful method to investigate the quality of semiconducting A2B6 crystals. An imperfection of surface quality can strongly influence photoacoustic spectra but it shows the different character for the different kinds of semiconducting materials. To properly interpret the amplitude and phase spectra, the temperature distribution and its modifications, due to the surface defects, are needed. The Blonskij model of the temperature distribution was used to investigate the influence of the defect on the amplitude and phase spectra.

Keywords

A2B6 materials Photoacoustic spectroscopy Piezoelectric detection Semiconductors 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  1. 1.
    Wang P., Nakagawa T., Fukuyama A., Maeda K., Iwasa Y., Ozeki M., Akashi Y., Ikari T.: Mater. Sci. Eng. C 26, 826 (2006)CrossRefGoogle Scholar
  2. 2.
    Fukuyama A., Sakamoto S., Sonoda S., Wang P., Sakai K., Ikari T.: Thin Solid Films 112, 511 (2006)Google Scholar
  3. 3.
    Sakai K., Kakeno T., Ikari T., Shirakata S., Sakemi T., Awai K., Yamamoto T.: J. Appl. Phys. 99, 043508 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Yoshino K., Komaki H., Kakeno T., Akaki Y., Ikari T.: J. Phys. Chem. Solids 64, 1839 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Hoshimiya T.: NDT & E Int. 32, 133 (1999)CrossRefGoogle Scholar
  6. 6.
    Katti K.S., Urban M.W.: Polymer 44, 3319 (2003)CrossRefGoogle Scholar
  7. 7.
    Takabatake N., Kobayashi T., Show Y., Izumi T.: Mater. Sci. Eng. B 91–92, 186 (2002)CrossRefGoogle Scholar
  8. 8.
    Poulin S., Yang D.Q., Sacher E., Hyett C., Ellis T.H.: Appl. Surf. Sci. 165, 15 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Jackson W., Amer N.M.: J. Appl. Phys. 51, 3343 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    Blonskij I.V., Thoryk V.A., Shendeleva M.L.: J. Appl. Phys. 79, 3512 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Maliński M., Zakrzewski J., Strzałkowski K.: Int. J. Thermophys. 28, 299 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Maliński M., Zakrzewski J., Strzałkowski K., Łęgowski S., Firszt F., Męczyńska H.: Surf. Sci. 603, 131 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Zakrzewski J., Maliński M., Strzałkowski K., Firszt F., Łęgowski S., Męczyńska H.: Int. J. Thermophys. 31, 208 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Maliński M., Zakrzewski J.: Eur. Phys. J. Spec. Top. 154, 345 (2008)CrossRefGoogle Scholar
  15. 15.
    Maliński M., Bychto L., Zakrzewski J.: J. Phys. IV 129, 245 (2005)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • J. Zakrzewski
    • 1
  • M. Maliński
    • 2
  • K. Strzałkowski
    • 1
  • D. Madaj
    • 3
  • F. Firszt
    • 1
  • S. Łęgowski
    • 1
  • H. Męczyńska
    • 1
  1. 1.Instytut FizykiUniwersytet Mikołaja KopernikaTorunPoland
  2. 2.Department of ElectronicsTechnical University of KoszalinKoszalinPoland
  3. 3.Wydział Matematyki i InformatykiUniwersytet Warmińsko-MazurskiOlsztynPoland

Personalised recommendations