International Journal of Thermophysics

, Volume 33, Issue 4, pp 707–715 | Cite as

Determination of Thermal-Diffusivity Dependence on Temperature of YAG Single Crystals with Different Concentrations of Yb3+ and V3+ Doping Ions

  • D. Trefon-RadziejewskaEmail author
  • J. Bodzenta
  • A. Kaźmierczak-Bałata
  • T. Łukasiewicz
Open Access


Thermal diffusivities of pure and doped yttrium aluminum garnet single crystals were measured as a function of temperature. Samples doped with rare earth ions (3 at% and 25 at% of Yb 3+, and 0.8 at% and 2.1 at% of V 3+) were investigated in the temperature range from 34 °C to 300 °C. Determination of the thermal diffusivity was based on an analysis of propagation of a thermal wave in the sample. The frequency of the thermal wave was 100 mHz. A temperature disturbance connected with the thermal wave propagating in the sample was detected using the mirage effect. The results showed that the thermal diffusivity of all investigated samples decreases with an increase of sample temperature. A drop in the thermal diffusivity is more pronounced for pure and low-doped crystals.


Optical crystals Temperature dependence Thermal diffusivity Thermal wave measurement 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Krupke W.F.: IEEE J. Sel. Top. Quant. Electron. 6, 1287 (2000)CrossRefGoogle Scholar
  2. 2.
    Dong J., Bass M., Mao Y.L., Deng P.Z., Gan F.X.: J. Opt. Soc. Am. B 20, 1975 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Bourdet G.L.: Opt. Commun. 198, 411 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Xu X.D., Zhao Z.W., Song P.X., Xu J., Deng P.Z.: J. Alloys Compd. 364, 311 (2004)CrossRefGoogle Scholar
  5. 5.
    Dong J., Deng P., Xu J.: Opt. Mater. 14, 109 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Bodzenta J., Kaźmierczak-Bałata A., Wokulska K., Kucytowski J., Szperlich P., Łukasiewicz T., Hofman B.: J. Alloys Compd. 473, 245 (2009)CrossRefGoogle Scholar
  7. 7.
    V.B. Sigachev, T.T. Basiev, M.E. Doroshenko, V.V. Osiko, A.G. Papashvili, in Advances in Solid-State Lasers, ed. by B.H.T. Chai, S.A. Payne, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, DC, 1995), pp. 454–459Google Scholar
  8. 8.
    Jelínková H., Sulc P., Sulc J., Jabczynski J.K., Kopczynski K., Zendzian W., Mierczyk Z., Miyagi M.: Opt. Eng. 41, 1976 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Agnesi A., Guandalini A., Reali G., Jabczynski J.K., Kopczynski K., Mierczyk Z.: Opt. Commun. 194, 429 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Bodzenta J., Pyka M.: J. Phys. IV France 137, 259 (2006)CrossRefGoogle Scholar
  11. 11.
    Kittel Ch.: Introduction to Solid State Physics. Wiley, New York (1966)Google Scholar
  12. 12.
    Bodzenta J., Kaźmierczak-Bałata A., Wokulska K.B., Kucytowski J., Łukasiewicz T., Hofman W.: Appl. Opt. 48, 46 (2009)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • D. Trefon-Radziejewska
    • 1
    Email author
  • J. Bodzenta
    • 1
  • A. Kaźmierczak-Bałata
    • 1
  • T. Łukasiewicz
    • 2
  1. 1.Institute of PhysicsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations