Advertisement

International Journal of Thermophysics

, Volume 33, Issue 3, pp 396–411 | Cite as

Thermophysical Properties of the Refrigerant Mixtures R417A and R417B from Dynamic Light Scattering (DLS)

  • A. Heller
  • M. H. Rausch
  • F. Flohr
  • A. Leipertz
  • A. P. FröbaEmail author
Article

Abstract

Dynamic light scattering (DLS) has been used for the measurement of several thermophysical properties of the refrigerant mixtures R417A (50 % by mass 1,1,1,2-tetrafluoroethane—R134a, 46.6 % pentafluoroethane—R125, 3.4 % n-butane—R600) and R417B (79 % by mass R125, 18.25 % R134a, 2.75 % R600). Both refrigerant mixtures are designed for a replacement of R22 (chlorodifluoromethane) in existing refrigeration systems. Thermal diffusivity and sound speed have been obtained by light scattering from the bulk fluid for the liquid phase under saturation conditions over a temperature range from about 283 K up to the liquid–vapor critical point with estimated uncertainties between 1 % and 3 % and between 0.5 % and 2 %, respectively. By applying the method of DLS to a liquid–vapor interface, also called surface light scattering, the saturated liquid kinematic viscosity and surface tension have been determined simultaneously. These properties have been measured from 253.15 K up to the liquid–vapor critical point with estimated uncertainties between 1 % and 3 % for kinematic viscosity and between 1 % and 2 % for surface tension. The measured thermal diffusivity, sound speed, kinematic viscosity, and surface tension are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the uncertainties. The results are discussed in detail in comparison with literature data and with various prediction methods.

Keywords

Kinematic viscosity R22 substitute R417A R417B Sound speed Surface tension Thermal diffusivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fröba A.P., Will S., Leipertz A.: Int. J. Thermophys. 22, 1021 (2001)CrossRefGoogle Scholar
  2. 2.
    Kraft K., Leipertz A.: Int. J. Thermophys. 15, 387 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Kraft K., Leipertz A.: Fluid Phase Equilib. 125, 245 (1996)CrossRefGoogle Scholar
  4. 4.
    Fröba A.P., Will S., Leipertz A.: Int. J. Thermophys. 22, 1349 (2001)CrossRefGoogle Scholar
  5. 5.
    Fröba A.P., Leipertz A.: Int. J. Thermophys. 24, 1185 (2003)CrossRefGoogle Scholar
  6. 6.
    Fröba A.P., Kremer H., Leipertz A.: Int. J. Thermophys. 25, 1115 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Fröba A.P., Botero C., Kremer H., Leipertz A.: Int. J. Thermophys. 28, 743 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Buchwald H., Flohr F., Hellmann J., König H., Meurer C.: Solkane Taschenbuch Kälte- und Klimatechnik. Solvay GmbH, Hannover (2010)Google Scholar
  9. 9.
    Berne B.J., Pecora R.: Dynamic Light Scattering. Robert E. Krieger, Malabar (1990)Google Scholar
  10. 10.
    Chu B.: Laser Light Scattering. Academic Press, New York (1991)Google Scholar
  11. 11.
    Langevin D.: Light Scattering by Liquid Surfaces and Complementary Techniques. Marcel Dekker, New York (1992)Google Scholar
  12. 12.
    A. Leipertz, A.P. Fröba in Diffusion in Condensed Matter—Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, Berlin, 2005), pp. 583–622Google Scholar
  13. 13.
    K. Kraft, Bestimmung von Schallgeschwindigkeit und Schalldämpfung transparenter Fluide mittels der Dynamischen Lichtstreuung, Dr.-Ing. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 1995Google Scholar
  14. 14.
    A. P. Fröba, Dynamic light scattering (DLS) for the characterization of working fluids in chemical and energy engineering, Habil. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 2009Google Scholar
  15. 15.
    Schmidt J.W., Moldover M.R.: J. Chem. Eng. Data 39, 39 (1994)CrossRefGoogle Scholar
  16. 16.
    Chae H.B., Schmidt J.W., Moldover M.R.: J. Phys. Chem. 94, 8840 (1990)CrossRefGoogle Scholar
  17. 17.
    K. Kroenlein, C.D. Muzny, A.F. Kazakov, V. Diky, R.D. Chirico, J.W. Magee, I. Abdulagatov, M. Frenkel, NIST/TRC Web Thermo Tables (WTT), NIST Standard Reference Subscription Database 2—Lite Edition, Version 2-2011-3-Lite (Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 2011)Google Scholar
  18. 18.
    A. P. Fröba, Simultane Bestimmung von Viskosität und Oberflächenspannung transparenter Fluide mittels Oberflächenlichtstreuung, Dr.-Ing. Thesis, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 2002Google Scholar
  19. 19.
    Fröba A.P., Will S., Leipertz A.: Int. J. Thermophys. 21, 1225 (2000)CrossRefGoogle Scholar
  20. 20.
    F. Wagner, Rayleigh- und Brillouin-Streuung an gesättigtem n-Butan im weiten Temperaturbereich bis hin zur kritischen Region, Diploma Thesis, Freie Universität Berlin, Berlin, 1989Google Scholar
  21. 21.
    Simonsohn G., Wagner F.: J. Phys. D 24, 415 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Simonsohn G., Wagner F.: J. Phys. D 22, 1179 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    E. W. Lemmon, M. O. McLinden, M. L. Huber, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.0 (Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 2010)Google Scholar
  24. 24.
    Solvay GmbH, Solkane Refrigerant Software Version 7.0.2.12 (Hannover, 2010)Google Scholar
  25. 25.
    Tillner-Roth R., Baehr H.D.: J. Phys. Chem. Ref. Data 23, 657 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    Bücker D., Wagner W.: J. Phys. Chem. Ref. Data 35, 929 (2006)CrossRefGoogle Scholar
  27. 27.
    Fröba A.P., Leipertz A.: Int. J. Thermophys. 24, 895 (2003)CrossRefGoogle Scholar
  28. 28.
    Miqueu C., Broseta D., Satherly J., Mendiboure B., Lachaise J., Graciaa A.: Fluid Phase Equilib. 172, 169 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Heller
    • 1
  • M. H. Rausch
    • 1
    • 2
  • F. Flohr
    • 3
  • A. Leipertz
    • 1
    • 2
  • A. P. Fröba
    • 1
    • 2
    Email author
  1. 1.Erlangen Graduate School in Advanced Optical Technologies (SAOT)University of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Engineering Thermodynamics (LTT)University of Erlangen-NurembergErlangenGermany
  3. 3.SOLVAY Fluor GmbHHannoverGermany

Personalised recommendations