Advertisement

International Journal of Thermophysics

, Volume 33, Issue 3, pp 513–527 | Cite as

Radiative Properties of Stoichiometric Hafnium, Titanium, and Zirconium Carbides: Thermodynamics of Thermal Radiation

  • Anatoliy I. Fisenko
  • Vladimir Lemberg
Article

Abstract

The true temperatures of the thermal radiation of stoichiometric hafnium, titanium, and zirconium carbides are defined from the generalized Wien displacement law. It is shown that Wien’s displacement law for the investigated stoichiometric carbides decreases linearly with increasing temperature. The uncertainties in the determination of the true temperature are no greater than 1 %. For determining the true temperature of stoichiometric carbides, the experimental values of the position of the maximum of the spectral density power are needed. By extrapolating the generalized Wien displacement laws in the ultra-high-temperature region, the positions of the maximum of the normal energy density of hafnium, titanium, and zirconium carbides at melting temperatures are obtained. Thermodynamics of thermal radiation of stoichiometric carbides is constructed by using the temperature dependences of the generalized Stefan–Boltzmann law. The calculated values of the normal total emissivity for the investigated carbides at different temperatures are in good agreement with experimental data. For determining the true temperatures of the thermal radiation of stoichiometric carbides, experimental values of either the normal total emissivity or the normal total energy density are needed. The temperature dependences of the Helmholtz free energy, entropy, heat capacity at constant volume, pressure, enthalpy, and internal energy of the thermal radiation of stoichiometric carbides at high temperature are obtained. It is shown that thermodynamic function values increase with increasing temperature as a power law.

Keywords

Enthalpy Entropy Generalized Wien’s displacement and Stefan–Boltzmann’s laws Heat capacity Helmholtz free energy Internal energy Melting temperature Pressure Spectral emissivity Stoichiometric hafnium, titanium, and zirconium carbides Total emissivity True temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levine S.R., Opila E.J., Halbig M.C., Kiser J.D., Singh M., Salem J.A.: J. Eur. Ceram. Soc. 22, 2757 (2002)CrossRefGoogle Scholar
  2. 2.
    Samsonov G.V., Paderno V.N.: Zhurnal Prikladnoi Khimii (USSR) 36, 2759 (1963)Google Scholar
  3. 3.
    Wuchina E., Opila E., Opeka M., Fahrenholtz W., Talmy I.: Interface 16, 30 (2007)Google Scholar
  4. 4.
    P.T.B. Shaffer, in Engineered Materials Handbook, vol. 4, Ceramics and Glass, ed. by S.J. Schneider (ASM International, Metals Park, OH, 1991), pp. 804–811Google Scholar
  5. 5.
    Baldinozzi G., Gosset D., Simeone D., Dollé M., Thomé L., Surblé S.: Mater. Res. Soc. Symp. Proc. 1043E, T02–01 (2007)Google Scholar
  6. 6.
    Sani E., Mercatelli L., Francini F.: J.-L. Sans, D. Sciti, Scr. Mater. 65, 775 (2011)Google Scholar
  7. 7.
    Agrafiotis C.C., Mavroidis I., Konstandopoulos A.G., Hoffschmidt B., Stobbe P., Romero M., Fernandez-Quero V.: Sol. Energy Mater. Sol. Cells 91, 474 (2007)CrossRefGoogle Scholar
  8. 8.
    Bolgar A.S., Guseva E.A., Fesenko V.V.: Powder Metall. Met. Ceram. 6, 33 (1967)CrossRefGoogle Scholar
  9. 9.
    Turchanin A.G., Guseva E.A., Fesenko V.V.: Powder Metall. Met. Ceram. 12, 215 (1973)CrossRefGoogle Scholar
  10. 10.
    Grossman L.N.: J. Am. Ceram. Soc. 48, 236 (1965)CrossRefGoogle Scholar
  11. 11.
    Touloukian Y.S.: Thermophysical Properties of High Temperatures Solid Materials, vol. 5, pp. 234. The Macmillan Co, New York (1967)Google Scholar
  12. 12.
    Zapadaeva T.E., Petrov V.A., Sokolov V.V.: High Temp. 19, 313 (1981)Google Scholar
  13. 13.
    T. Riethof, B. Acchione, E. Branyan, in Temperature, Its Measurement and Control in Science and Industry, vol. 3, ed. by A.I. Dahl (Reinhold Publishing Corporation, New York, 1962), p. 515Google Scholar
  14. 14.
    Bolgar A.S., Guseva E.A., Fesenko V.V.: Powder Metall. Met. Ceram. 49, 31 (1967)CrossRefGoogle Scholar
  15. 15.
    Zapadaeva T.E., Petrov V.A., Sokolov V.V.: High Temp. 18, 76 (1980)Google Scholar
  16. 16.
    Ivashov S.N., Fisenko A.I.: Zhurnal Prikladnoi Spectroskopyi 48, 1024 (1988) [in Russian]Google Scholar
  17. 17.
    Fisenko A.I., Ivashov S.N.: Int. J. Thermophys. 30, 1524 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Ivashov S.N., Fisenko A.I.: J. Eng. Phys. 57, 838 (1990)CrossRefGoogle Scholar
  19. 19.
    Fisenko A.I., Ivashov S.N.: J. Phys. D. Appl. Phys. 32, 2882 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Ershov V.A., Fisenko A.I.: Combust. Explos. Shock Waves 28, 159 (1992)CrossRefGoogle Scholar
  21. 21.
    Landau L.D., Lifshitz E.M.: Statistical Physics, Course of Theoretical Physics, vol. 5, pp. 484. Pergamon Press, Oxford, NY (1980)Google Scholar
  22. 22.
    A.K. Kaw, E. Kalu, Numerical Methods with Applications: Customized for University of South Carolina, (autarkaw.com, 2011), p. 594Google Scholar
  23. 23.
  24. 24.
    Levine S.R., Opila E.J., Halbig M.C., Kiser J.D., Singh M., Salem J.A.: J. Eur. Ceram. Soc. 22, 2757 (2002)CrossRefGoogle Scholar
  25. 25.
    Meng S., Chen H., Hu J., Wang Z.: Mater. Des. 32, 377 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.ONCFEC Inc.St. CatharinesCanada

Personalised recommendations