International Journal of Thermophysics

, Volume 33, Issue 3, pp 495–504 | Cite as

Simultaneous Measurement of Thermophysical Properties of Tissue-Mimicking Phantoms for High Intensity Focused Ultrasound (HIFU) Exposures

Article

Abstract

Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.

Keywords

Egg white phantom High intensity focused ultrasound (HIFU) Step-wise transient plane source (TPS) method Thermophysical properties Tissue-mimicking phantom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopelman D., Papa M.: Ann. Surg. Oncol. 14, 1540 (2007)CrossRefGoogle Scholar
  2. 2.
    ter Haar G.: Prog. Biophys. Mol. Biol. 93, 111 (2007)CrossRefGoogle Scholar
  3. 3.
    Jolesz F.A., McDannold N.: J. Magn. Reson. Imaging 27, 391 (2008)CrossRefGoogle Scholar
  4. 4.
    Hynynen K.: Ultrasonics 50, 221 (2010)CrossRefGoogle Scholar
  5. 5.
    C. Lafon, P.J. Kaczkowski, S. Vaezy, in Proceedings IEEE Ultrasonics Symposium (2001), pp. 1295–1298Google Scholar
  6. 6.
    Lafon C., Zderic V., Noble M.L.: Ultrasound Med. Biol. 31, 1383 (2005)CrossRefGoogle Scholar
  7. 7.
    Takegami K., Kaneko Y., Watanabe T.: Ultrasound Med. Biol. 30, 1419 (2004)CrossRefGoogle Scholar
  8. 8.
    G. Divkovic, W.J. Jenne, AIP Conference Proceedings of the 4th International Symposium on Therapeutic Ultrasound (2005), pp. 143–146Google Scholar
  9. 9.
    Divkovic W., Liebler M.: Ultrasound Med. Biol. 33, 981 (2007)CrossRefGoogle Scholar
  10. 10.
    S.D. Nandlall, M. Arora, H.A. Schiffter, AIP Conference Proceedings of the 8th International Symposium on Therapeutic Ultrasound (2009), p. 205Google Scholar
  11. 11.
    Kubicar L., Bohac V.: Meas. Sci. Technol. 11, 252 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Tye R.P., Kubicar L., Lockmuller N.: Int. J. Thermophys. 26, 1917 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Yu F., Zhang X.-X., He X.-W.: J. Astronaut. Metrol. Meas. 26, 13 (2006)Google Scholar
  14. 14.
    Lei Z., Zhu S., Pan N.: Polym. Test. 28, 307 (2009)CrossRefGoogle Scholar
  15. 15.
    International Standard ISO 22007, Plastics—Determination of Thermal Conductivity and Thermal Diffusivity (2007)Google Scholar
  16. 16.
    Gustafsson S.E., Karawacki E., Nazim Khan M.: J. Phys. D 12, 1411 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    Al-Ajlan S.A.: Appl. Therm. Eng. 26, 2184 (2006)CrossRefGoogle Scholar
  18. 18.
    Bilek J., Atkinson J.K., Wakeham W.A.: Int. J. Thermophys. 27, 1626 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Huang L., Liu L.: J. Food Eng. 95, 179 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Engineering, Physics and MathematicsUniversity of DundeeDundeeUK
  2. 2.Institute for Medical Science and TechnologyUniversity of DundeeDundeeUK
  3. 3.Department of Medical PhysicsNinewells HospitalDundeeUK

Personalised recommendations