Advertisement

International Journal of Thermophysics

, Volume 33, Issue 2, pp 363–380 | Cite as

Application of Differential Transform Method to Thermoelastic Problem for Annular Disks of Variable Thickness with Temperature-Dependent Parameters

  • Ryoichi Chiba
Article

Abstract

This article analyzes the one-dimensional steady temperature field and related thermal stresses in an annular disk of variable thickness that has a temperature-dependent heat transfer coefficient and is capable of temperature-dependent internal heat generation. The temperature dependencies of the thermal conductivity, Young’s modulus, and the coefficient of linear thermal expansion of the disk are considered, whereas Poisson’s ratio is assumed to be constant. The differential transform method (DTM) is employed to analyze not only the nonlinear heat conduction but also the resulting thermal stresses. Analytical solutions are developed for the temperature and thermal stresses in the form of simple power series. Numerical calculations are performed for an annular cooling/heating fin of variable thickness. Numerical results show that the sufficiently converged analytical solutions are in good agreement with the solutions obtained by the Adomian decomposition method and give the effects of the temperature-dependent parameters on the temperature and thermal stress profiles in the disk. The DTM is useful as a new analytical method for solving thermoelastic problems for a body with temperature-dependent parameters including material properties.

Keywords

Annular fin Differential transform method Nonlinear heat conduction Temperature-dependent parameter Thermal stress Variable thickness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liaw S.P., Yeh R.H.: Int. J. Heat Mass Transfer 37, 1509 (1994)CrossRefGoogle Scholar
  2. 2.
    Clayton D.G.: Inst. Chem. Eng. Symp. Ser. 2, 1191 (1984)Google Scholar
  3. 3.
    Zhu S., Satravaha P.: Appl. Math. Model. 20, 513 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Trostel R.: Arch. Appl. Mech. 26, 134 (1958)MathSciNetMATHGoogle Scholar
  5. 5.
    Nowinski J.: Trans. ASME J. Appl. Mech. 29, 399 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Ismail I.A., Nowinski J.L.: Appl. Sci. Res. 14, 211 (1965)CrossRefGoogle Scholar
  7. 7.
    Eraslan A.N., Kartal M.E.: J. Therm. Stresses 28, 861 (2005)CrossRefGoogle Scholar
  8. 8.
    Noda N.: Appl. Mech. Rev. 44, 383 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    Kumakura I., Ouchi M., Takeyama T.: Trans. Jpn. Soc. Mech. Eng. 47, 1317 (1981)Google Scholar
  10. 10.
    Takeyama T., Endo T., Owada K.: Trans. Jpn. Soc. Mech. Eng. 39, 2835 (1973)CrossRefGoogle Scholar
  11. 11.
    Unal H.C.: Int. J. Heat Mass Transfer 28, 2279 (1985)CrossRefGoogle Scholar
  12. 12.
    Abbasbandy S., Shivanian E.: Phys. Lett. A 374, 567 (2010)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Lesnic D., Heggs P.J.: Int. Commun. Heat Mass Transfer 31, 673 (2004)CrossRefGoogle Scholar
  14. 14.
    Chowdhury M.S.H., Hashim I.: Phys. Lett. A 372, 1240 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Moitsheki R.J., Hayat T., Malik M.Y.: Nonlinear Anal. Real World Appl. 11, 3287 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Unal H.C.: Int. J. Heat Mass Transfer 30, 1465 (1987)CrossRefGoogle Scholar
  17. 17.
    Gamayunov N.I., Klinger A.V.: J. Eng. Phys. Thermophys. 41, 1256 (1981)Google Scholar
  18. 18.
    R.J. Moitsheki, A. Rowjee, Math. Prob. Eng. Article ID 826819 (2011)Google Scholar
  19. 19.
    Aziz A., Bouaziz M.N.: Energy Conv. Manag. 52, 2876 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhou J.K.: Differential Transform and its Application for Electric Circuits. Huazhong University Press, Wuhan (1986)Google Scholar
  21. 21.
    Bert C.W.: Trans. ASME J. Heat Transfer 124, 208 (2002)CrossRefGoogle Scholar
  22. 22.
    Peng H.S., Chen C.L.: Int. J. Heat Mass Transfer 54, 2427 (2011)MATHCrossRefGoogle Scholar
  23. 23.
    Chu H.P., Chen C.L.: Commun. Nonlinear Sci. Numer. Simul. 13, 1605 (2008)ADSMATHCrossRefGoogle Scholar
  24. 24.
    Yu L.T., Chen C.K.: Trans. ASME J. Appl. Mech. 66, 340 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Lo C.Y., Chen B.Y.: Numer. Heat Transfer B 55, 219 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Moradi A., Ahmadikia H.: Int. J. Eng. Appl. Sci. 3, 42 (2011)Google Scholar
  27. 27.
    Rashidi M.M., Erfani E.: Comput. Phys. Commun. 180, 1539 (2009)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Joneidi A.A., Ganji D.D., Babaelahi M.: Int. Commun. Heat Mass Transfer 36, 757 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Moradi, H. Ahmadikia, Math. Prob. Eng. Article ID 568263 (2010)Google Scholar
  30. 30.
    Yu L.T., Chen C.K.: J. Franklin Inst. 336, 77 (1999)MATHCrossRefGoogle Scholar
  31. 31.
    Yu L.T., Chen C.K.: J. Therm. Stresses 21, 781 (1998)CrossRefGoogle Scholar
  32. 32.
    Moradi A.: Int. J. Eng. Appl. Sci. 3, 1 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Yaghoobi H., Torabi M.: Int. Commun. Heat Mass Transfer 38, 815 (2011)CrossRefGoogle Scholar
  34. 34.
    Jang M.J., Yeh Y.L., Chen C.L., Yeh W.C.: Appl. Math. Comput. 216, 2339 (2010)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Chen C.K., Ho S.H.: Appl. Math. Comput. 79, 173 (1996)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Hung H.M., Appl F.C.: Trans. ASME J. Heat Transfer 89, 155 (1967)CrossRefGoogle Scholar
  37. 37.
    Sugano Y., Chiba R., Hirose K.: Trans. Jpn. Soc. Mech. Eng. A 67, 542 (2001)CrossRefGoogle Scholar
  38. 38.
    Takeuti Y., Komori S., Noda N., Nyuko H.: J. Therm. Stresses 2, 233 (1979)CrossRefGoogle Scholar
  39. 39.
    Sugano Y.: Arch. Appl. Mech. 54, 301 (1984)MATHGoogle Scholar
  40. 40.
    Chiu C., Chen C.: Acta Mech. 157, 147 (2002)MATHCrossRefGoogle Scholar
  41. 41.
    Chiu C.H., Chen C.O.K.: J. Therm. Stresses 25, 475 (2002)CrossRefGoogle Scholar
  42. 42.
    Nyuko H., Takeuti Y., Noda N.: Trans. Jpn. Soc. Mech. Eng. 44, 1454 (1978)CrossRefGoogle Scholar
  43. 43.
    Takeuti Y., Noda N.: Analyses of Thermal Stresses, pp. 282–287. Nisshin Syuppan, Tokyo (1989)Google Scholar
  44. 44.
    Campo A., Rodrfguez F.: Int. Commun. Heat Mass Transfer 25, 809 (1998)CrossRefGoogle Scholar
  45. 45.
    Sugano Y., Kataoka S., Tanaka K.: Trans. Jpn. Soc. Mech. Eng. A 59, 1505 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mechanical Systems EngineeringAsahikawa National College of TechnologyAsahikawaJapan

Personalised recommendations