Advertisement

International Journal of Thermophysics

, Volume 34, Issue 12, pp 2261–2275 | Cite as

Design and Application of a Freestanding Sensor Based on 3ω Technique for Thermal-Conductivity Measurement of Solids, Liquids, and Nanopowders

  • L. Qiu
  • X. H. Zheng
  • G. P. Su
  • D. W. TangEmail author
Article

Abstract

A practical and reusable freestanding sensor based on the 3ω technique is fabricated by encapsulating a nano-thick nickel detector between two pieces of Kapton film. Because of the protection of the Kapton layer, the mechanical strength and applicability of the sensor are greatly improved compared with the traditional 3ω sensor. Furthermore, the nondestructive thermal-conductivity characterization for solids, liquids, and nanopowder specimens based on the 3ω technique is first realized. However, the introduction of the additional protective film also induces an undesirable decrease in accuracy for the thermal-conductivity measurement. This article discusses the underlying reason for this decreased accuracy and accordingly proposes an error correction scheme for accurate determination of the thermal conductivity.

Keywords

3ω Technique Freestanding sensor Liquids Nanopowders Solids Thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cahill D.G., Pohl R.O.: Phys. Rev. B 35, 4067 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Cahill D.G.: Rev. Sci. Instrum. 61, 802 (1990)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Cahill D.G., Katiyar M., Abelson J.R.: Phys. Rev. B 50, 6077 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    Lee S.M., Cahill D.G.: J. Appl. Phys. 81, 2590 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Borca-Tasciuc T., Kumar A.R., Chen G.: Rev. Sci. Instrum. 72, 2139 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Yi W., Lu L., Dian-lin Z., Pan Z.W., Xie S.S.: Phys. Rev. B 59, R9015 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Wang Z.L., Tang D.W., Li X.B., Zheng X.H.: Appl. Phys. Lett. 91, 123119 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Lu L., Yi W., Zhang D.L.: Rev. Sci. Instrum. 72, 2996 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Hu X.J., Padilla A.A., Xu J., Fisher T.S., Goodson K.E.: J. Heat Transf. 128, 1109 (2006)CrossRefGoogle Scholar
  10. 10.
    Wang Z.L., Tang D.W., Liu S., Zheng X.H., Araki N.: Int. J. Thermophys. 28, 1255 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Shin S., Cho H.N., Kim B.S., Cho H.H.: Thin Solid Films 517, 933 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Jung D.H., Kwon T.W., Bae D.J., Moon I.K., Jeong Y.H.: Meas. Sci. Technol. 3, 475 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Moon I.K., Jeong Y.H., Kwun S.I.: Rev. Sci. Instrum. 67, 1 (1996)CrossRefGoogle Scholar
  14. 14.
    Xiao S.Y., Che L.F., Li X.X., Wang Y.L.: Microelectron. Eng. 85, 452 (2008)CrossRefGoogle Scholar
  15. 15.
    Yang Y.J., Cheng M.Y., Chang W.Y., Tsao L.C., Yang S.A., Shih W.P., Chang F.Y., Chang S.H., Fan K.C.: Sens. Actuators, A 143, 143 (2008)CrossRefGoogle Scholar
  16. 16.
    Lee C.Y., Wu G.W., Hsieh W.J.: Sens. Actuators, A 147, 173 (2008)CrossRefGoogle Scholar
  17. 17.
    Olson B.W., Graham S., Chen K.: Rev. Sci. Instrum. 76, 053901 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Tong T., Majumdar A.: Rev. Sci. Instrum. 77, 104902 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Raudzis C.E., Schatz F., Wharam D.: J. Appl. Phys. 93, 6050 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 81st edn. (CRC Press, Boca Raton, FL, 2000), pp. 6–177Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. Qiu
    • 1
    • 2
  • X. H. Zheng
    • 1
    • 2
  • G. P. Su
    • 1
    • 2
  • D. W. Tang
    • 1
    Email author
  1. 1.Institute of Engineering Thermophysics, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations