International Journal of Thermophysics

, Volume 33, Issue 4, pp 716–732 | Cite as

Triplet Thermal Relaxation Study as a Probe of Weak Interdimers of Porphyrin Derivatives

  • D. WróbelEmail author
  • A. Biadasz
  • B. Bursa
Open Access


This article deals with results concerning the study of interacting dyes which are able to create weak interdimers. Two groups of organic systems: phthalocyanines (di-ethanol-amine and di-octane-amine) and pyridyl porphyrins (zinc, copper, and free-base) covalently linked to polyethylene glycol (PEG) in water and organic solvents (dioxane, dimethylsulfoxide) were investigated. Absorption, fluorescence, and photoacoustics were used as experimental methods but particular attention was paid to light-induced optoacoustic spectroscopy to follow the dye’s triplet population and triplet thermal relaxation to study intermolecular interactions. It has been shown that even the weak interactions of the organic dyes under study is not detectable by absorption and only slightly by fluorescence is it possible to follow interactions by complementary photothermal methods. The results obtained for selected phthalocyanines and covalent porphyrin–polymer samples evidently show that the light-induced optoacoustic experiment is a perfect tool in the detection of weakly interacting aggregates.


Fluorescence lifetime Interdimer Porphyrin derivatives Time-resolved optoacoustics Triplet thermal relaxation 



The paper has been supported by the Poznan University of Technology, Poland DS-62-176/2011. The phthalocyanine samples were kindly obtained from Prof. R. Ion (ICECHIM-Bucharest, Romania) and porphyrin–polymer samples from Dr. Yu. S. Avlasevich (Max Planck Institute for Polymer Research, Mainz, Germany)

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Davydov A.S.: Theory of Molecular Excitons. McGraw-Hill, New York (1962)Google Scholar
  2. 2.
    Kasha M., Rawls H.R., El-Bayoumi M.A.: Pure Appl. Chem. 11, 371 (1965)CrossRefGoogle Scholar
  3. 3.
    Booth K.M., Hill S.L.: The Essence of Optoelectronics. Prentice Hall, Englewood Cliffs, NJ (1998)Google Scholar
  4. 4.
    Beletskaya I., Tyurin V.S., Tsivadze A.Y., Guilard R., Stern C.: Chem. Rev. 109, 1659 (2009)CrossRefGoogle Scholar
  5. 5.
    Scheer, H. (eds): Chlorophylls. CRC Press, Boca Raton, FL (1991)Google Scholar
  6. 6.
    Brabec, C.J., Dyakonov, V., Scherf , U. (eds): Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Wiley-VCH Verlag GmbH & Co., Weinheim (2008)Google Scholar
  7. 7.
    Brütting W.: Physics of Organic Semiconductors. Wiley-VCH Verlag GMBM & Co., Weinheim (2005)CrossRefGoogle Scholar
  8. 8.
    Drain C.M., Smeureanu G., Patel S., Gong X., Garno J., Arijeloye J.: New J. Chem. 30, 1834 (2006)CrossRefGoogle Scholar
  9. 9.
    Kautsky H., Merkel H.: Naturwissenschaften 27, 195 (1939)ADSCrossRefGoogle Scholar
  10. 10.
    Levison L., Simpson W.T., Curtis W.: J. Am. Chem. Soc. 79, 4314 (1957)CrossRefGoogle Scholar
  11. 11.
    Szent-Györgyi A.: Science 124, 873 (1956)ADSCrossRefGoogle Scholar
  12. 12.
    Förster Th.: Naturwissenschaften 33, 166 (1946)ADSCrossRefGoogle Scholar
  13. 13.
    A.J. Hoff, J. Amesz, in Chlorophylls, ed. by H. Scheer (CRC Press, Boca Raton, FL, 1991), p. 723Google Scholar
  14. 14.
    Fudickar W., Zimmermann J., Ruhlmann L., Schneider J., Röder B., Siggel U., Fuhrhop J-H.: J. Am. Chem. Soc. 121, 9539 (1999)CrossRefGoogle Scholar
  15. 15.
    Pottier R., Lachaine A., Pierre M., Kennedy J.C.: Photochem. Photobiol. 47, 669 (1988)CrossRefGoogle Scholar
  16. 16.
    Orti E., Bredas J.L., Clarisse C.J.: J. Chem. Phys. 92, 1228 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    Maiti N.C., Mazumdar S., Reriasamy N.: J. Phys. Chem. 102, 1528 (1998)CrossRefGoogle Scholar
  18. 18.
    Dodsworth E.S., Lever A.B.P., Seymour P., Leznoff C.C.: J. Phys. Chem. 89, 5698 (1985)CrossRefGoogle Scholar
  19. 19.
    Stillman M.J.: J. Porphyr. Phthalocya. 4, 374 (2000)CrossRefGoogle Scholar
  20. 20.
    A.J. Barnes, in Proceedings of the 8th International Conference on Molecular Spectroscopy (Wrocław-Ļdek Zdrój, 2005), p. 9Google Scholar
  21. 21.
    Boguta A., Wójcik A., Ion R.M., Wróbel D.: J. Photochem. Photobiol. A: Chem. 163, 201 (2004)CrossRefGoogle Scholar
  22. 22.
    Feitelson J., Mauzerall D.: J. Phys. Chem. 100, 7698 (1996)CrossRefGoogle Scholar
  23. 23.
    Siejak A., Wróbel D., Avlasevich Yu. S.: J. Phys. IV France 137, 331 (2006)CrossRefGoogle Scholar
  24. 24.
    Siejak A., Wróbel D., Laskowska B., Avlasevich Yu.S.: Spectrochim. Acta Part A: Mol. Biomol. Spectr. 74, 148 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Leznoff C.C., Lever A.B.P.: Phthalocyanines: Properties and Applications. VCH, New York (1996)Google Scholar
  26. 26.
    Smith K.M.: Porphyrins and Metalloporphyrins. Elsevier, Amsterdam (1975)Google Scholar
  27. 27.
    Dolphin D.: The Porphyrins. Academic Press, New York (1979)Google Scholar
  28. 28.
    Drain C.M., Voratto A., Radivojevic I.: Chem. Rev. 109, 1630 (2009)CrossRefGoogle Scholar
  29. 29.
    O’Regan B., Grätzel M.: Nature 335, 7377 (1991)Google Scholar
  30. 30.
    Wróbel D., Dudkowiak A.: Mol. Cryst. Liq. Cryst. 448, 15 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Birks (ed.), Organic Molecular Photophysics, vols. 1–2 (Wiley, New York, 1973, 1975)Google Scholar
  32. 32.
    Elemans J.A.A., van Hameren R., Nolte R.J.M., Rowan A.E.: Adv. Mater. 18, 1251 (2006)CrossRefGoogle Scholar
  33. 33.
    Mills A., Le Hunte S.: J. Photochem. Photobiol. 108, 1 (1997)CrossRefGoogle Scholar
  34. 34.
    Imahori H., Mori Y., Matano Y.: J. Photochem. Photobiol. C: Photochem. Rev. 4, 51 (2003)CrossRefGoogle Scholar
  35. 35.
    Hong F.T.: Molecular Electronics, Biosensors and Biocomputers. Plenum Press, New York, London (1989)Google Scholar
  36. 36.
    V. Rosenbach-Belkin, L. Chevn, L. Fiedor, Y. Salomon, A. Scherz, in Photodynamic Tumor Therapy, 2nd and 3rd Generation Photosensitizers, ed. by J.G. Moser (Harwood Academic Publishers, Amsterdam, 1998), p. 117Google Scholar
  37. 37.
    D. Wróbel, A. Boguta, in Molecular Low Dimensional and Nanostructured Materials for Advanced Applications, ed by A. Graja, B. Bułka, F. Kajzar (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000), p. 71Google Scholar
  38. 38.
    D. Wróbel, C.R. Chemie 6, 417 (2003)Google Scholar
  39. 39.
    Wróbel D., Boguta A., Ion R.M.: J. Photochem. Photobiol. A: Chem. 138, 7 (2001)CrossRefGoogle Scholar
  40. 40.
    Ion R.M., Scarlat F.: Rev. Chimie 55, 900 (2004)Google Scholar
  41. 41.
    Ion R.M., Yilmaz I., Bekaroglu O., Serb J.: J. Chem. Soc. 64, 453 (1999)Google Scholar
  42. 42.
    Avlasevich Yu.S., Kulinkovich O.G., Knyukshto V.N., Solov’ev K.N.: J. Appl. Spectr. 66, 597 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Boguta A., Wróbel D., Avlasevich Yu.S., Reis R., Richter A.: Mater. Sci. 22, 373 (2004)Google Scholar
  44. 44.
    van Zandvoort M.A.M.J., Wróbel D., Lettinga P., Van Ginkel G., Levine Y.K.: Photochem. Photobiol. A: Chem. 62, 279 (1995)CrossRefGoogle Scholar
  45. 45.
    Lakowicz J.: Principles of Fluorescence Spectroscopy. Plenum Press, New York (1999)Google Scholar
  46. 46.
    Frąckowiak D., Planner A., Waszkowiak A., Boguta A., Ion R.M., Wiktorowicz K.: Photochem. Photobiol. A: Chem. 141, 101 (2001)CrossRefGoogle Scholar
  47. 47.
    Braslavsky S.E., Heibel G.E.: Chem. Rev. 92, 1381 (1992)CrossRefGoogle Scholar
  48. 48.
    Marti C., Jurgens O., Cuenca O., Casals M., Nonell S.: J. Photochem. Photobiol. A: Chem. 97, 11 (1996)CrossRefGoogle Scholar
  49. 49.
    Rudzki-Small J., Libertini L.J., Small E.W.: Biophys. Chem. 42, 29 (1992)CrossRefGoogle Scholar
  50. 50.
    Wróbel D., Boguta A.: J. Photochem. Photobiol. A: Chem. 150, 67 (2002)CrossRefGoogle Scholar
  51. 51.
    Marais E., Klein R., Antunes E., Nyokong T.J.: J. Mol. Catal. A: Chem. 261, 36 (2007)CrossRefGoogle Scholar
  52. 52.
    Rosenthal I.: Photochem. Photobiol. 53, 859 (1991)Google Scholar
  53. 53.
    Wróbel D., Łukasiewicz J., Boguta A.: J. Phys. IV France 109, 111 (2003)CrossRefGoogle Scholar
  54. 54.
    Avlasevich Yu.S., Knyukshto V.N., Kulinkovich O.G., Solovyov K.N.: J. Appl. Spectr. 67, 663 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    Knyukshto V.N., Avlasevich Yu. S., Kulinkovich O.G., Solovyov K.N.: J. Fluoresc. 99, 371 (1999)CrossRefGoogle Scholar
  56. 56.
    Wróbel D., Boguta A., Wójcik A.: J. Phys. IV France 117, 101 (2004)CrossRefGoogle Scholar
  57. 57.
    Bociocchi E., d’Acunzo F., Galli C.: Tetrahedron Lett. 33, 315 (1995)CrossRefGoogle Scholar
  58. 58.
    Smart B.E.: J. Fluorine Chem. 109, 3 (2001)CrossRefGoogle Scholar
  59. 59.
    Zhang X-F., Xu H-J.: J. Chem. Soc. Faraday Trans. 89, 3347 (1993)CrossRefGoogle Scholar
  60. 60.
    Wróbel D., Łukasiewicz J., Manikowski H.: Dyes Pigments 58, 7 (2003)CrossRefGoogle Scholar
  61. 61.
    Rosencwaig A.: Photoacoustics and Photoacoustic Spectroscopy. Wiley, New York (1980)Google Scholar
  62. 62.
    Dudkowiak A., Teślak E., Habdas J.: J. Mol. Struct. 792-793, 93 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Siejak A., Wróbel D., Ion R.M.: J. Photochem. Photobiol. A: Chem. 181, 180 (2006)CrossRefGoogle Scholar
  64. 64.
    Siejak A., Wróbel D., Siejak P., Olejarz B., Ion R.M.: Dyes Pigments 83, 281 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Faculty of Technical Physics, Institute of PhysicsPoznan University of TechnologyPoznanPoland

Personalised recommendations