Advertisement

Measurement of the Boltzmann Constant k B Using a Quasi-Spherical Acoustic Resonator

  • Laurent Pitre
  • Fernando Sparasci
  • Daniel Truong
  • Arnaud Guillou
  • Lara Risegari
  • Marc E. Himbert
Open Access
Article

Abstract

There is currently great interest in the international metrological community for new accurate determinations of the Boltzmann constant k B, with the prospect of a new definition of the unit of thermodynamic temperature, the kelvin. In fact, k B relates the unit of energy (the joule) to the unit of the thermodynamic temperature (the kelvin). One of the most accurate ways to access the value of the Boltzmann constant is from measurements of the velocity of the sound in a noble gas. In the method described here, the experimental determination has been performed in a closed quasi-spherical cavity. To improve the accuracy, all the parameters in the experiment (purity of the gas, static pressure, temperature, exact shape of the cavity monitored by EM microwaves, etc.) have to be carefully controlled. Correction terms have been computed using carefully validated theoretical models, and applied to the acoustic and microwave signals. We report on two sets of isothermal acoustic measurements yielding the value k B = 1.380 647 74(171) × 10−23 J · K−1 with a relative standard uncertainty of 1.24 parts in 106. This value lies 1.9 parts in 106 below the 2006 CODATA value (Mohr et al., Rev. Mod. Phys. 80, 633 (2008)), but, according to the uncertainties, remains consistent with it.

Keywords

Acoustic resonance Boltzmann constant Definition of the kelvin Metrology Microwave resonance Quasi-sphere System of units Thermometry Triaxial ellipsoid Unit of temperature 

Notes

Acknowledgments

The authors gratefully acknowledge Michael R. Moldover and James B. Mehl for sharing their long experience on the subject and their constant advice. Numerous persons contributed to this work. Michel Bruneau, Anne-Marie Bruneau, and Cécile Guianvarc’h provided acoustic expertise. Simona Lago and Paolo Alberto Giuliano Albo measured the elastic properties of a BCU3 copper sample and Wilfrid Poirier measured our standard resistor. Gaël Obein, Patrick Ballereau, Michel Bruneau, and Antoine Legay were sources of constructive discussions about the gas-flow effect on the speed of sound. We would also like to thank the Editor-in-Chief and all the team of IJOT for their help and advice. We gratefully acknowledge funding from the French National Research Agency ANR and the EURAMET Joint Research Project receives funding from the European community’s Seventh Frame work programme, iMERAPlus, under Grant Agreement No. 217257. Last but not least, these programmes were made possible through the very fruitful collaboration between our laboratory and other European laboratories, notably NPL and INRiM. In particular, we would like to thank Roberto Gavioso, Paolo Alberto Giuliano Albo, Michael de Podesta, Robin Underwood, and Gavin Sutton for the many discussions, the shared project results, and the years of close collaboration. We would not have been able to achieve these results without the support of Terry Quinn, Françoise Le Frious, and Yves Hermier.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Moldover M.R., Trusler J.P.M., Edwards T.J., Mehl J.B., Davis R.S.: J. Res. Natl. Bur. Stand. (U.S.) 93, 85 (1988)Google Scholar
  2. 2.
    Sutton G., Underwood R., Pitre L., De Podesta M., Valkiers S.: Int. J. Thermophys. 31, 1310 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Pitre L., Guianvarc’h C., Sparasci F., Richard A., Truong D.: Int. J. Thermophys. 29, 1730 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Committee for Thermometry, Recommendation T2 to the CIPM, New Determinations of Thermodynamic Temperature and the Boltzmann Constant, Working Documents of the 23rd Meeting of the Consultative Committee for Thermometry, BIPM document CCT/05-31Google Scholar
  5. 5.
    Fischer J., Gerasimov S., Hill K.D., Machin G., Moldover M.R., Pitre L., Steur P., Stock M., Tamura O., Ugur H., White D.R., Yang I.: Int. J. Thermophys. 28, 1753 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Mohr P.J., Taylor B.N., Newell D.B.: Rev. Mod. Phys. 80, 633 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Pitre L., Guianvarc’h C., Sparasci F., Guillou A., Truong D., Hermier Y., Himbert M.E.: C. R. Phys. 10, 835 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Gavioso R.M., Benedetto G., Giuliano Albo P.A., Madonna Ripa D., Merlone A., Guianvarc’h C., Moro F., Cuccaro R.: Metrologia 47, 387 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J.T. Zhang, H. Lin, X.J. Feng, J.P. Sun, K.A. Gillis, M.R. Moldover, Y.Y. Duan, Int. J. Thermophys. doi: 10.1007/s10765-011-1001-3
  10. 10.
    Guianvarc’h C., Pitre L., Bruneau M., Bruneau A.-M.: J. Acoust. Soc. Am. 125, 1416 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Moldover M.R., Mehl J.B., Greenspan M.: J. Acoust. Soc. Am. 79, 253 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    Mehl J.B., Moldover M.R.: Phys. Rev. A 34, 3341 (1986)ADSCrossRefGoogle Scholar
  13. 13.
    Moldover M.R., Boyes S.J., Meyer C.W., Goodwin A.R.H.: J. Res. Natl. Inst. Stand. Technol. 104, 11 (1999)CrossRefGoogle Scholar
  14. 14.
    Ewing M.B., Trusler J.P.M.: J. Chem. Thermodyn. 32, 1229 (2000)CrossRefGoogle Scholar
  15. 15.
    Benedetto G., Gavioso R.M., Spagnolo R., Marcarino P., Merlone A.: Metrologia 41, 74 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Pitre L., Moldover M.R., Tew W.L.: Metrologia 43, 142 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Ripple D.C., Strouse G.F., Moldover M.R.: Int. J. Thermophys. 28, 1789 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Gavioso R.M., Madonna Ripa D., Guianvarc’h C., Benedetto G., Giuliano Albo P.A., Cuccaro R., Pitre L., Truong D.: Int. J. Thermophys. 31, 1739 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Mehl J.B., Moldover M.R., Pitre L.: Metrologia 41, 295 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    May E.F., Pitre L., Mehl J.B., Moldover M.R., Schmidt J.W.: Rev. Sci. Instrum. 75, 3307 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Mehl J.B.: Metrologia 46, 554 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Underwood R.J., Mehl J.B., Pitre L., Edwards G., Sutton G., de Podesta M.: Meas. Sci. Technol. 21, 075103 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    de Podesta M., May E.F., Mehl J.B., Pitre L., Gavioso R.M., Benedetto G., Giuliano Albo P.A., Truong D., Flack D.: Metrologia 47, 588 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    P.A. Giuliano Albo, INRIM, private noteGoogle Scholar
  25. 25.
    Underwood R., Flack D., Morantz P., Sutton G., Shore P., de Podesta M.: Metrologia 48, 1 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Supplementary Information for the International Temperature Scale of 1990, BIPM (1997), http://www.bipm.org
  27. 27.
    Evaluation of measurement data—Guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections, JCGM 100:2008, First edn. (JCGM, 2008)Google Scholar
  28. 28.
    Buckley T.J., Hamelin J., Moldover M.R.: Rev. Sci. Instrum. 71, 2914 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    J.B. Mehl, private communicationGoogle Scholar
  30. 30.
    Jackson J.D.: Classical Electrodynamics. 3rd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  31. 31.
    R.M. Gavioso, G. Benedetto, D. Madonna Ripa, P.A. Giuliano Albo, C. Guianvarc’h, A. Merlone, L. Pitre, D. Truong, F. Moro, R. Cuccaro, Progress in INRiM experiment for the determination of the Boltzmann constant with a quasi-spherical resonator. Int. J. Thermophys., doi: 10.1007/s10765-011-1032-9.
  32. 32.
    D.C. Ripple, D.R. Defibaugh, K.A. Gillis, M.R. Moldover, in Proceedings of TEMPMEKO’99, 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J. F. Dubbeldam, M.J. de Groot (Edauw Johannissen bv, Delft, 1999), pp. 418–423Google Scholar
  33. 33.
    Ripple D.C., Strouse G.F., Moldover M.R.: Int. J. Thermophys. 28, 1789 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Gillis K.A., Shinder I.I., Moldover M.R.: Phys. Rev. E 70, 021201 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Moldover M.R.: Comptes Rendus Physique 10, 815 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Gillis K.A., Lin H., Moldover M.R.: J. Res. Natl. Inst. Stand. Technol. 114, 263 (2009)CrossRefGoogle Scholar
  37. 37.
    Guianvarc’h C., Gavioso R.M., Benedetto G., Pitre L., Bruneau M.: Rev. Sci. Instrum. 80, 074901 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Bruneau M., Bruneau A.-M., Škvor Z., Lotton P.: Acta. Acoust. 2, 223 (1994)Google Scholar
  39. 39.
    Mehl J.B.: J. Res. Natl. Inst. Stand. Technol. 112, 163 (2007)CrossRefGoogle Scholar
  40. 40.
    Mehl J.B.: Int. J. Thermophys. 31, 1259 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Mehl J.B.: J. Acoust. Soc. Am. 72, 782 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    Ewing M.B., Goodwin A.R.H.: J. Chem. Thermodyn. 24, 531 (1992)CrossRefGoogle Scholar
  43. 43.
    A. Guillou, L. Pitre, D. Truong, F. Sparasci, C. Guianvarc’h, BCU2V2 (2007) to BCU3 (2009): the improvements made in our last apparatus for the Boltzmann’s constant redetermination with an acoustic method, IV International Workshop on Progress in Determining the Boltzmann Constant, Turin, Italy (2009), http://www.inrim.it/kb2009
  44. 44.
    A. Guillou, L. Pitre, F. Sparasci, D. Truong, New determination of the Boltzmann constant with an acoustic quasi spherical resonator filled with argon, EAA EUROREGIO on Sound and Vibration, Ljubljana, Slovenia (2010)Google Scholar
  45. 45.
    Truong D., Sparasci F., Foltête E., Ouisse M., Pitre L.: Int. J. Thermophys. 32, 427 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    May E.F., Moldover M.R., Berg R.F., Hurly J.J.: Metrologia 43, 247 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Hurly J.J., Mehl J.B.: J. Res. Natl. Inst. Stand. Technol. 112, 75 (2007)CrossRefGoogle Scholar
  48. 48.
    Maitland G.C., Rigby R., Smith E.B., Wakeham W.A.: Intermolecular Forces: Their Origin and Determination, pp. 568–572. Clarendon Press, Oxford (1981)Google Scholar
  49. 49.
    Estrada-Alexanders A.F., Trusler J.P.M.: J. Chem. Thermodyn. 27, 1075 (1995)CrossRefGoogle Scholar
  50. 50.
    Valkiers S., Vendelbo D., Berglund M., de Podesta M.: Int. J. Mass Spectrom. 291, 41 (2010)CrossRefGoogle Scholar
  51. 51.
    de Podesta M., Sutton G., Underwood R., Bell S., Stevens M., Byrne T., Josephs-Franks P.: Metrologia 48, L1 (2010)CrossRefGoogle Scholar
  52. 52.
    Allan D.W.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 647 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    W. Van Dael, in Experimental Thermodynamics, Volume II. Experimental Thermodynamics of Non-reacting Fluids, ed. by B. Le Neindré, B. Vodar (Butterworths, London, 1975)Google Scholar
  54. 54.
    de Podesta M., Sutton G., Underwood R., Perkin M., Davidson S., Morantz P.: Int. J. Thermophys. 32, 413 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    L. Pitre, A. Guillou, D. Truong, F. Sparasci, C. Guianvarc’h, An acoustic/microwave determination of the Boltzmann constant at LNE-INM/CNAM, Presented at the IV International Workshop on Progress in Determining the Boltzmann Constant, Torino, Italy (2009), http://www.inrim.it/kb2009

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Laurent Pitre
    • 1
  • Fernando Sparasci
    • 1
  • Daniel Truong
    • 1
  • Arnaud Guillou
    • 1
  • Lara Risegari
    • 1
  • Marc E. Himbert
    • 1
  1. 1.Laboratoire Commun de Métrologie LNE—Cnam (LCM)La Plaine Saint-DenisFrance

Personalised recommendations