International Journal of Thermophysics

, Volume 32, Issue 5, pp 913–924 | Cite as

Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry

  • Patricia Losada-Pérez
  • Chandra Shekhar Pati Tripathi
  • Jan Leys
  • George Cordoyiannis
  • Christ Glorieux
  • Jan Thoen
Article

Abstract

Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats that can be used as thermal storage materials with a large energy storage capacity in a relatively narrow temperature range. In many practical applications the solid–liquid phase change is used. For applications accurate knowledge of different thermal parameters has to be available. In particular, the temperature dependence of the enthalpy around the phase transition has to be known with good accuracy. Usually, the phase transitions of PCMs are investigated with differential scanning calorimetry (DSC) at fast dynamic scanning rates resulting in the effective heat capacity from which the (total) heat of transition can be determined. Here we present adiabatic scanning calorimetry (ASC) as an alternative approach to arrive simultaneously at the equilibrium enthalpy curve and at the heat capacity. The applicability of ASC is illustrated with measurements on paraffin-based PCMs and on a salt hydrate PCM.

Keywords

Adiabatic scanning calorimetry Enthalpy Heat capacity Latent heat Phase change materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mehling H., Cabeza L.F.: Heat and Cold Storage with PCM—An up to Date Introduction into Basics and Applications. Springer, Berlin, Heidelberg (2008)Google Scholar
  2. 2.
    Z. Liu, D.D.L. Chung, Thermochim. Acta 366, 135 (2001), and references thereinGoogle Scholar
  3. 3.
    A. Genovese, G. Amarasinghe, M. Glewis, D. Mainwaring, R.A. Shanks, Thermochim. Acta 443, 235 (2006), and references thereinGoogle Scholar
  4. 4.
    Günther E., Hiebler S., Mehling H., Redlich R.: Int. J. Thermophys. 30, 1257 (2009)CrossRefGoogle Scholar
  5. 5.
    Thoen J., Marynissen H., Van Dael W.: Phys. Rev. A 26, 2886 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    Cordoyiannis G., Pinto L.F.V., Godinho M.H., Glorieux C., Thoen J.: Phase Transitions 83, 280 (2009)CrossRefGoogle Scholar
  7. 7.
    Thoen J., Cordoyiannis G., Glorieux C.: Liquid Cryst. 36, 669 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Thoen, High resolution adiabatic scanning calorimetry and heat capacities. in Heat Capacities: Liquids, Solutions and Vapours, chap. 13, ed. by E. Wilhelm, T. Letcher (The Royal Society of Chemistry, London, 2010), pp. 287–306Google Scholar
  9. 9.
    Pitsi G., Caerels J., Thoen J.: Phys. Rev. B 55, 915 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Van Roie B., Leys J., Denolf K., Glorieux C., Pitsi G., Thoen J.: Phys. Rev. E 72, 041702 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Lushington K.J., Kasting G.B., Garland C.W.: J. Phys. Lett. 41, L419 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Patricia Losada-Pérez
    • 1
  • Chandra Shekhar Pati Tripathi
    • 1
  • Jan Leys
    • 1
  • George Cordoyiannis
    • 1
    • 2
  • Christ Glorieux
    • 1
  • Jan Thoen
    • 1
  1. 1.Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en SterrenkundeKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Condensed Matter Physics DepartementJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations