Advertisement

International Journal of Thermophysics

, Volume 32, Issue 1–2, pp 139–152 | Cite as

Realization of a 3He–4He Vapor-Pressure Thermometer for Temperatures Between 0.65 K and 5 K at LNE-CNAM

  • F. SparasciEmail author
  • L. Pitre
  • D. Truong
  • L. Risegari
  • Y. Hermier
Article

Abstract

In the temperature range between 0.65 K and 5 K, the International Temperature Scale of 1990 (ITS-90) is based on 3He and 4He vapor-pressure thermometers. Between 0.65 K and 1 K, the ITS-90 overlaps with the Provisional Low Temperature Scale of 2000 (PLTS-2000), defined in term of the melting pressure of 3He. Some differences, up to more than 1 mK, exist between the two scales in the overlapping interval. The LNE-CNAM has recently started the construction of a 3He–4He vapor-pressure thermometer to realize the ITS-90 in its lowest subrange at the highest degree of accuracy. The device is provided with two separate vapor-pressure chambers, one for 3He and the other for 4He, built in a single copper block, and is installed in the experimental space of a dilution refrigerator. The vapor-pressure thermometer is designed to accommodate on the same copper block several transfer standards, an acoustic thermometer, and the 3He melting-pressure thermometer. This configuration is intended for realizing calibrations of transfer standards down to 0.65 K, for investigating the possibility to extend the acoustic thermometer below 4 K, and to perform a direct comparison between the ITS-90 and the PLTS-2000 in the overlapping temperature range, in order to study their differences. The realization of the system has been recently accomplished, and this report illustrates the characteristics of such an experimental device.

Keywords

Acoustic thermometry Cryogenics International Temperature Scale of 1990 (ITS-90) Provisional Low Temperature Scale of 2000 (PLTS-2000) Thermodynamic temperature Vapor pressure thermometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engert J., Fellmuth B., Jousten K.: Metrologia 44, 40 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Comité Consultatif de Thermométrie, Mise en pratique for the definition of the kelvin (2006), http://www.bipm.org/utils/en/pdf/MeP_K.pdf
  3. 3.
    L. Pitre, Y. Hermier, G. Bonnier, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, part 1 ed. by D.C. Ripple (AIP, New York, 2003), pp. 95–100Google Scholar
  4. 4.
    R.L. Rusby, in Temperature: Its Measurement and Control in Science and Industry, vol. 5, part 2, ed. by J.F. Schooley (AIP, New York, 1982), pp. 829–833Google Scholar
  5. 5.
    L. Pitre, Y. Hermier, G. Bonnier, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, part 1, ed. by D.C. Ripple (AIP, New York, 2003), pp. 101–105Google Scholar
  6. 6.
    L. Pitre, Vers de Nouvelles Références de Température en Dessous de 0,65 K: Etude Métrologique des Résonances du Deuxième son dans les Mélanges 3He–4He en Cavité Acoustique, Ph.D. Thesis, CNAM Paris, France, 1999Google Scholar
  7. 7.
    W.A. Bosch, J. Flokstra, G.E. de Groot, M.J. de Groot, R. Jochemsen, F. Mathu, A. Peruzzi, D. Veldhuis, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, part 1, ed. by D.C. Ripple (AIP, New York, 2003), pp. 155–160Google Scholar
  8. 8.
    Pitre L., Guianvarc’h C., Sparasci F., Guillou A., Truong D., Hermier Y., Himbert M.E.: C.R. Phys. 10, 835 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    F. Sparasci, Modelling and Control of Experimental Apparatuses for Thermal Metrology, Ph.D. Thesis, Politecnico di Torino, Italy, 2007Google Scholar
  10. 10.
    Pobell F.: Matter and Methods at Low Temperatures. Springer Verlag, Berlin (1992)Google Scholar
  11. 11.
    J. Engert, B. Fellmuth, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, part 1, ed. by D.C. Ripple (AIP, New York, 2003), pp. 113–118Google Scholar
  12. 12.
    Astrov D.N., Beliansky L.B., Dedikov Y.A., Polunin S.P., Zakharov A.A.: Metrologia 26, 151 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Bureau International des Poids et Mesures, Supplementary Information for the International Temperature Scale of 1990 (Pavillon de Bretueil, Sevres, France, 1990), http://www.bipm.org/en/publications/its-90_supplementary.html (1990)
  14. 14.
    Steur P.P.M., Durieux M.: Metrologia 23, 1 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    Hurly J.J., Mehl J.B.: J. Res. Natl. Bur. Stand. 112, 75 (2007)CrossRefGoogle Scholar
  16. 16.
    http://www.euramet.org. Accessed 2010
  17. 17.
    Ibach H., Lüth H.: Solid-State Physics, an Introduction to Theory and Experiment. Springer-Verlag, Berlin, Heidelberg (1991)Google Scholar
  18. 18.
    Hagmann C., Richards P.L.: Cryogenics 35, 345 (1995)CrossRefGoogle Scholar
  19. 19.
    White G.K., Meeson P.J.: Experimental Techniques in Low-Temperature Physics, 4th edn. Clarendon Press, Oxford (2002)Google Scholar
  20. 20.
    Greywall D.S.: Phys. Rev. B 33, 7520 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    X.Y. Li, Y.H. Huang, G.B. Chen, V.D. Arp, in Proceedings of the Twentieth International Cryogenic Engineering Conference (ICEC20), Beijing, 2004 (Elsevier Science, Amsterdam, 2006)Google Scholar
  22. 22.
    Keller W.E.: Helium-Three and Helium-Four. Plenum, New York (1969)Google Scholar
  23. 23.
    Van Sciver S.W.: Helium Cryogenics. Plenum, New York (1986)Google Scholar
  24. 24.
    Smith D.R., Fickett F.R.: J. Res. Natl Inst. Stand. Technol. 100, 119 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Sparasci
    • 1
    Email author
  • L. Pitre
    • 1
  • D. Truong
    • 1
  • L. Risegari
    • 1
  • Y. Hermier
    • 1
  1. 1.Laboratoire Commun de Métrologie LNE-CNAMLa Plaine Saint-DenisFrance

Personalised recommendations