International Journal of Thermophysics

, Volume 32, Issue 3, pp 674–692 | Cite as

A Novel Technique for Experimental Thermophysical Characterization of Phase-Change Materials

  • Zohir Younsi
  • Laurent Zalewski
  • Stéphane Lassue
  • Daniel R. Rousse
  • Annabelle Joulin


The major objective of this project is to use phase-change materials (PCMs) as integrated components in passive solar heat recovery systems. The suggested approach involves experimental investigations and characterization of the global behavior of a parallelepiped “material wrap” filled with the PCM. The experimental apparatus permits simultaneous measurements of heat fluxes and temperatures. It also allows imposing and measuring temperatures variations with respect to selected time scales between the two predominant faces of the sample. The instantaneous heat flux measurements allow the determination of the “apparent” or overall heat storage capacities and thermal conductivities of the PCM—in the solid and liquid states—and that of the latent heat of melting. Results were found to be very satisfactory.


Calorimetry Heat flux measurement Heat storage Phase-change material Thermophysical properties 



Temperature, °C


Temperature difference, °C


Density of heat flux, W · m−2


Total stored energy, J


Specific heat, J · kg−1 · K−1


Latent heat of melting, J · kg−1


Thickness, m


Thermal conductivity, W · m−1 · K−1


Mass, kg


Time, h



Liquid state


Solid state


Melting point






Internal face of the envelope


External face of the envelope


Sample (brick) which includes the PCM and its envelope


Measurement on the first side of the brick


Measurement on the second side of the brick


Phase change material


At the end, in steady state


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abhat A.: Sol. Energy 30, 313 (1983)CrossRefADSGoogle Scholar
  2. 2.
    Tyagi V.V., Budhi D.: Renew. Sust. Energy Rev. 11, 1146 (2007)CrossRefGoogle Scholar
  3. 3.
    Khudhair A.M., Farid M.M.: Energy Convers. Manage. 45, 263 (2004)CrossRefGoogle Scholar
  4. 4.
    Zhu N., Ma Z., Wang S.: Energy Convers. Manage. 50, 3169 (2009)CrossRefGoogle Scholar
  5. 5.
    Zalba B., Marín J.M., Cabeza L.F.: Appl. Therm. Eng. 23, 251 (2003)CrossRefGoogle Scholar
  6. 6.
    Farid M.M., Khudhair A.M., Razack S.A.K., Al-Hallaj S.: Energy Convers. Manage. 45, 1597 (2004)CrossRefGoogle Scholar
  7. 7.
    Sharma A., Tyagi V.V., Chen C.R., Buddhi D.: Renew. Sust. Energy Rev. 13, 318 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhang Y., Zhou G., Lin K., Zhang Q., Di H.: Build. Environ. 42, 2197 (2007)CrossRefGoogle Scholar
  9. 9.
    Regin A.F., Solanki S.C., Saini J.S.: Renew. Sust. Energy Rev. 12, 2438 (2008)CrossRefGoogle Scholar
  10. 10.
    Mondal S.: Appl. Therm. Eng. 28, 1536 (2008)CrossRefGoogle Scholar
  11. 11.
    Sethi V.P., Sharma S.K.: Sol. Energy 82, 832 (2008)CrossRefGoogle Scholar
  12. 12.
    Verma P., Varun S., Singal S.K.: Renew. Sust. Energy Rev. 12, 999 (2008)CrossRefGoogle Scholar
  13. 13.
    Zalewski L., Lassue S., Duthoit B., Butez M.: Build. Environ. 37, 109 (2002)CrossRefGoogle Scholar
  14. 14.
    Zalewski L., Chantant M., Lassue S., Duthoit B.: Energy Build. 55, 8 (1997)Google Scholar
  15. 15.
    Available from, consulted 2010-03-15 to obtain manufacturer’s parameters
  16. 16.
    Banu D., Feldman D., Hawes D.: Thermochim. Acta 317, 39 (1998)CrossRefGoogle Scholar
  17. 17.
    Rady M.: Energy Convers. Manage. 50, 1210 (2009)CrossRefGoogle Scholar
  18. 18.
    Bentz D.P., Turpin R.: Cem. Concr. Compos. 29, 527 (2009)CrossRefGoogle Scholar
  19. 19.
    Yinping Z., Yi J.: Meas. Sci. Technol. 10, 201 (1999)CrossRefADSGoogle Scholar
  20. 20.
    F. Cordeiro Cavalcanti, Caractérisation thermique de produits de l’état liquide à l’état solide, Thèse de Doctorat., Institut National des Sciences Appliquées de Lyon (2006)Google Scholar
  21. 21.
    Brown M.E.: Handbook of Thermal Analysis and Calorimetry, vol. 2. 2nd edn. Elsevier, Amsterdam (2003)Google Scholar
  22. 22.
    Vidalain G., Gosselin L., Lacroix M.: Int. J. Heat Mass Transf. 52, 1753 (2009)CrossRefMATHGoogle Scholar
  23. 23.
    He B., Martin V., Setterwall F.: Energy 29, 1785 (2004)CrossRefGoogle Scholar
  24. 24.
    Ehmimed J.F., Zeraouli Y., Dumas J.P., Mimet A.: Int. J. Therm. Sci. 42, 33 (2003)CrossRefGoogle Scholar
  25. 25.
    Stritih U.: Int. J. Heat Mass Transf. 47, 2841 (2004)CrossRefGoogle Scholar
  26. 26.
    Leclercq D., Thery P.: Rev. Sci. Instrum. 54, 374 (1983)CrossRefADSGoogle Scholar
  27. 27.
    S. Lassue, S. Guths, D. Leclercq, B. Duthoit, in Proceedings of 3rd Conf. on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics (Hawaii, 1993), pp. 831–838Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zohir Younsi
    • 3
  • Laurent Zalewski
    • 1
    • 2
  • Stéphane Lassue
    • 1
    • 2
  • Daniel R. Rousse
    • 4
  • Annabelle Joulin
    • 1
    • 2
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.Université d’Artois, LGCgEBéthuneFrance
  3. 3.Hautes Etudes d’Ingénieur (HEI)LilleFrance
  4. 4.Department of Mechanical Engineering, École de Technologie SupérieureUniversité du QuébecMontréalCanada

Personalised recommendations