Advertisement

International Journal of Thermophysics

, Volume 31, Issue 11–12, pp 2059–2077 | Cite as

Thermal Conductivity of Ionic Liquids: Measurement and Prediction

  • A. P. FröbaEmail author
  • M. H. Rausch
  • K. Krzeminski
  • D. Assenbaum
  • P. Wasserscheid
  • A. Leipertz
Article

Abstract

This study reports thermal-conductivity data for a series of [EMIM] (1-ethyl-3-methylimidazolium)-based ionic liquids (ILs) having the anions [NTf2] (bis(trifluoromethylsulfonyl)imide), [OAc] (acetate), [N(CN)2] (dicyanimide), [C(CN)3] (tricyanomethide), [MeOHPO2] (methylphosphonate), [EtSO4] (ethylsulfate), or [OcSO4] (octylsulfate), and in addition for ILs with the [NTf2]-anion having the cations [HMIM] (1-hexyl-3-methylimidazolium), [OMA] (methyltrioctylammonium), or [BBIM] (1,3-dibutylimidazolium). Measurements were performed in the temperature range between (273.15 and 333.15) K by a stationary guarded parallel-plate instrument with a total measurement uncertainty of 3 % (k = 2). For all ILs, the temperature dependence of the thermal conductivity can well be represented by a linear equation. While for the [NTf2]-based ILs, a slight increase of the thermal conductivity with increasing molar mass of the cation is found at a given temperature, the [EMIM]-based ILs show a pronounced, approximately linear decrease with increasing molar mass of the different probed anions. Based on the experimental data obtained in this study, a simple relationship between the thermal conductivity, molar mass, and density is proposed for the prediction of the thermal-conductivity data of ILs. For this, also densities were measured for [EMIM][OAc], [EMIM][C(CN)3], and [HMIM][NTf2]. The mean absolute percentage deviation of all thermal-conductivity data for ILs found in the literature from the proposed prediction is about 7 %. This result represents a convenient simplification in the acquisition of thermal conductivity information for the enormous amount of structurally different IL cation/anion combinations available.

Keywords

Density Ionic liquids Parallel-plate method Prediction Refractive index Thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10765_2010_889_MOESM1_ESM.xls (1.4 mb)
ESM 1 (XLS 1,450 kb)

References

  1. 1.
    Torimoto T., Tsuda T., Okazaki K., Kuwabata S.: Adv. Mater. 22, 1196 (2010)CrossRefGoogle Scholar
  2. 2.
    Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B.: Nat. Mater. 8, 621 (2009)CrossRefADSGoogle Scholar
  3. 3.
    Wishart J.F.: Energy Environ. Sci. 2, 956 (2009)CrossRefGoogle Scholar
  4. 4.
    Plechkova N.V., Seddon K.R.: Chem. Soc. Rev. 37, 123 (2008)CrossRefGoogle Scholar
  5. 5.
    El Seoud O.A., Koschella A., Fidale L.C., Dorn S., Heinze T.: Biomacromolecules 8, 2629 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhao H.: Chem. Eng. Commun. 193, 1660 (2006)CrossRefGoogle Scholar
  7. 7.
    Chiappe C., Pieraccini D.: J. Phys. Org. Chem. 18, 275 (2005)CrossRefGoogle Scholar
  8. 8.
    Wasserscheid P., Keim W.: Angew. Chem. Int. Ed. 39, 3772 (2000)Google Scholar
  9. 9.
    Jork C., Kristen C., Pieraccini D., Stark A., Chiappe C., Beste Y.A., Arlt W.: J. Chem. Thermodyn. 37, 537 (2005)CrossRefGoogle Scholar
  10. 10.
    Sakaebe H., Matsumoto H., Tatsumi K.: Electrochim. Acta 53, 1048 (2007)CrossRefGoogle Scholar
  11. 11.
    Jiménez A.-E., Bermúdez M.-D.: Tribol. Lett. 26, 53 (2007)CrossRefGoogle Scholar
  12. 12.
    Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S.: Thermochim. Acta 425, 181 (2005)CrossRefGoogle Scholar
  13. 13.
    J.S. Wilkes, in Ionic Liquids in Synthesis, ed. by P. Wasserscheid, T. Welton (Wiley-VCH, Weinheim, 2003), p. 2Google Scholar
  14. 14.
    Tochigi K., Yamamoto H.: J. Phys. Chem. C 111, 15989 (2007)CrossRefGoogle Scholar
  15. 15.
    Zhang S., Sun N., He X., Lu X., Zhang X.: J. Phys. Chem. Ref. Data 35, 1475 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Deetlefs M., Seddon K.R., Shara M.: Phys. Chem. Chem. Phys. 8, 642 (2006)CrossRefGoogle Scholar
  17. 17.
    Gardas R.L., Coutinho J.A.P.: AIChE J. 55, 1274 (2009)CrossRefGoogle Scholar
  18. 18.
    França J.M.P., Nieto de Castro C.A., Lopes M.M., Nunes V.M.B.: J. Chem. Eng. Data 54, 2569 (2009)CrossRefGoogle Scholar
  19. 19.
    Frez C., Diebold G.J., Tran C.D., Yu S.: J. Chem. Eng. Data 51, 1250 (2006)CrossRefGoogle Scholar
  20. 20.
    Tomida D., Kenmochi S., Tsukada T., Yokoyama C.: Netsu Bussei 20, 173 (2006)CrossRefGoogle Scholar
  21. 21.
    Tomida D., Kenmochi S., Tsukada T., Qiao K., Yokoyama C.: Int. J. Thermophys. 28, 1147 (2007)CrossRefGoogle Scholar
  22. 22.
    Ge R., Hardacre C., Nancarrow P., Rooney D.W.: J. Chem. Eng. Data 52, 1819 (2007)CrossRefGoogle Scholar
  23. 23.
    Chen H., He Y., Zhu J., Alias H., Ding Y., Nancarrow P., Hardacre C., Rooney D., Tan C.: Int. J. Heat Fluid Flow 29, 149 (2008)CrossRefGoogle Scholar
  24. 24.
    Nieto de Castro C.A., Lourenço M.J.V., Ribeiro A.P.C., Vieira S.I.C., Goodrich P., Hardacre C.: J. Chem. Eng. Data 55, 653 (2010)CrossRefGoogle Scholar
  25. 25.
    Gardas R.L., Ge R., Goodrich P., Hardacre C., Hussain A., Rooney D.W.: J. Chem. Eng. Data 55, 1505 (2010)CrossRefGoogle Scholar
  26. 26.
    Maier F., Gottfried J.M., Rossa J., Gerhard D., Schulz P.S., Schwieger W., Wasserscheid P., Steinrück H.-P.: Angew. Chem. Int. Ed. 45, 7778 (2006)CrossRefGoogle Scholar
  27. 27.
    Himmler S., Hörmann S., van Hal R., Schulz P.S., Wasserscheid P.: Green Chem. 8, 887 (2006)CrossRefGoogle Scholar
  28. 28.
    Hasse B., Lehmann J., Assenbaum D., Wasserscheid P., Leipertz A., Fröba A.P.: J. Chem. Eng. Data 54, 2576 (2009)CrossRefGoogle Scholar
  29. 29.
    J.H. Davis, C.M. Gordon Jr., C. Hilgers, P. Wasserscheid, in Ionic Liquids in Synthesis, ed. by P. Wasserscheid, T. Welton (Wiley-VCH, Weinheim, 2006), p. 7Google Scholar
  30. 30.
    Naziev Ya.M., Bashirov M.M., Abdulagatov I.M.: Fluid Phase Equilib. 226, 221 (2004)CrossRefGoogle Scholar
  31. 31.
    Braun R., Fischer S., Schaber A.: Wärme Stoffübertrag. 17, 121 (1983)CrossRefADSGoogle Scholar
  32. 32.
    Kohler M.: Z. Angew. Phys. 18, 356 (1965)Google Scholar
  33. 33.
    Poltz H.: Int. J. Heat Mass Transf. 8, 515 (1965)zbMATHCrossRefGoogle Scholar
  34. 34.
    Fröba A.P., Kremer H., Leipertz A.: J. Phys. Chem. B 112, 12420 (2008)CrossRefGoogle Scholar
  35. 35.
    Ramires M.L.V., Nieto de Castro C.A., Perkins R.A., Nagasaka Y., Nagashima A., Assael M.J., Wakeham W.A.: J. Phys. Chem. Ref. Data 29, 133 (2000)CrossRefADSGoogle Scholar
  36. 36.
    A.P. Fröba, M.H. Rausch, K. Krzeminski, A. Leipertz, Int. J. Heat Mass Transfer (to be submitted) (2011)Google Scholar
  37. 37.
    Rowley R.L., Yi S.-C., Gubier D.V., Stoker J.M.: J. Chem. Eng. Data 33, 362 (1988)CrossRefGoogle Scholar
  38. 38.
    Nieto de Castro C.A., Calado J.C.G., Wakeham W.A., Dix M.: J. Phys. E 9, 1073 (1976)CrossRefADSGoogle Scholar
  39. 39.
    Watanabe H., Kato H.: J. Chem. Eng. Data 49, 809 (2004)CrossRefGoogle Scholar
  40. 40.
    Assael M.J., Charitidou E., Nieto de Castro C.A.: Int. J. Thermophys. 9, 813 (1988)CrossRefGoogle Scholar
  41. 41.
    Widegren J.A., Magee J.W.: J. Chem. Eng. Data 52, 2331 (2007)CrossRefGoogle Scholar
  42. 42.
    Yoshida Y., Muroi K., Otsuka A., Saito G., Takahashi M., Yoko T.: Inorg. Chem. 43, 1458 (2004)CrossRefGoogle Scholar
  43. 43.
    Marsh K.N., Brennecke J.F., Chirico R.D., Frenkel M., Heintz A., Magee J.W., Peters C.J., Rebelo L.P.N., Seddon K.R.: Pure Appl. Chem. 81, 781 (2009)CrossRefGoogle Scholar
  44. 44.
    Chirico R.D., Diky V., Magee J.W., Frenkel M., Marsh K.N.: Pure Appl. Chem. 81, 791 (2009)CrossRefGoogle Scholar
  45. 45.
    Jacquemin J., Ge R., Nancarrow P., Rooney D.W., Costa Gomes M.F., Pádua A.A.H., Hardacre C.: J. Chem. Eng. Data 53, 716 (2008)CrossRefGoogle Scholar
  46. 46.
    Tariq M., Forte P.A.S., Costa Gomes M.F., Canongia Lopes J.N., Rebelo L.P.N.: J. Chem. Thermodyn. 41, 790 (2009)CrossRefGoogle Scholar
  47. 47.
    Ahosseini A., Sensenich B., Weatherley L.R., Scurto A.M.: J. Chem. Eng. Data 55, 1611 (2010)CrossRefGoogle Scholar
  48. 48.
    Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 52, 1080 (2007)CrossRefGoogle Scholar
  49. 49.
    Esperança J.M.S.S., Guedes H.J.R., Lopes J.N.Ganongia, Rebelo L.P.N.: J. Chem. Eng. Data 53, 867 (2008)CrossRefGoogle Scholar
  50. 50.
    Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 52, 1881 (2007)CrossRefGoogle Scholar
  51. 51.
    Tome L.I.N., Carvalho P.J., Freire M.G., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P., Gardas R.L.: J. Chem. Eng. Data 53, 1914 (2008)CrossRefGoogle Scholar
  52. 52.
    Gardas R.L., Costa H.F., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 53, 805 (2008)CrossRefGoogle Scholar
  53. 53.
    Esperança J.M.S.S., Guedes H.J.R., Blesic M., Rebelo L.P.N.: J. Chem. Eng. Data 51, 237 (2006)CrossRefGoogle Scholar
  54. 54.
    Gardas R.L., Freire M.G., Carvalho P.J., Marrucho I.M., Fonseca I.M.A., Ferreira A.G.M., Coutinho J.A.P.: J. Chem. Eng. Data 52, 80 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. P. Fröba
    • 1
    • 2
    Email author
  • M. H. Rausch
    • 2
  • K. Krzeminski
    • 2
  • D. Assenbaum
    • 3
  • P. Wasserscheid
    • 3
  • A. Leipertz
    • 1
    • 2
  1. 1.Erlangen Graduate School in Advanced Optical Technologies (SAOT)University of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Engineering Thermodynamics (LTT)University of Erlangen-NurembergErlangenGermany
  3. 3.Institute of Chemical Reaction Engineering (CRT)University of Erlangen-NurembergErlangenGermany

Personalised recommendations