International Journal of Thermophysics

, Volume 32, Issue 4, pp 762–773 | Cite as

Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

  • A. Dudkowiak
  • B. Olejarz
  • J. Łukasiewicz
  • J. Banaszek
  • J. Sikora
  • K. Wiktorowicz
Open Access
Article

Abstract

The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

Keywords

Chlorophyll Cyanobacteria Heavy metal Optical and photothermal spectroscopy Synechocystis aquatilis 

References

  1. 1.
    Zhou Q., Zhang J., Fu J., Shi J., Jiang G.: Anal. Chim. Acta 606, 135 (2008)CrossRefGoogle Scholar
  2. 2.
    Adams S., Greeley M.: Water Air Soil Pollut 123, 103 (2000)CrossRefGoogle Scholar
  3. 3.
    M.K. Joshi, P. Mohanty, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, ed. by G.C. Papageorgiou, G.C. Govindjee. (Springer, Dordrecht, 2004), pp. 637–661Google Scholar
  4. 4.
    Hall J.L.: J. Exp. Bot. 53, 1 (2002)CrossRefGoogle Scholar
  5. 5.
    Chaloub R.M., de Magalhaes C.C.P., dos Santos C.P.: J. Physiol. 41, 1162 (2005)Google Scholar
  6. 6.
    Nies D.: Appl. Microbiol. Biotechnol. 51, 730 (1999)CrossRefGoogle Scholar
  7. 7.
    Burger J.: Environ. Bioindic. 1, 136 (2006)CrossRefGoogle Scholar
  8. 8.
    Lu C.M., Chau C.W., Zhang J.H.: Chemosphere 41, 191 (2000)CrossRefGoogle Scholar
  9. 9.
    Baptista M.S., Vasconcelos M.T.: Crit. Rev. Microbiol. 32, 127 (2006)CrossRefGoogle Scholar
  10. 10.
    Miao A.-J., Wang W.-X., Juneau P.: Environ. Toxicol. Chem. 24, 2603 (2005)CrossRefGoogle Scholar
  11. 11.
    Yu Y., Kong F., Wang M., Qian L., Shi X.: Ecotoxicol. Environ. Saf. 66, 49 (2007)CrossRefGoogle Scholar
  12. 12.
    W.F.J. Vermaas, in Encyclopedia of Life Sciences (Macmillian Reference Ltd., London, 2001), pp. 1–7Google Scholar
  13. 13.
    R.H. Reed, G.M. Gadd, in Heavy Metal Tolerance in Plants: Evolutionary Aspects, ed. by A.J. Shaw. (CRC Press, Boca Raton, FL. 1990), pp. 105–118Google Scholar
  14. 14.
    de Filippis L.F., Pallaghy C.K.: Z. Pflanzenphysiol. 78, 314 (1992)Google Scholar
  15. 15.
    Maxwell K., Johnson G.N.: J. Exp. Bot. 51, 659 (2000)CrossRefGoogle Scholar
  16. 16.
    Baker N.R.: Annu. Rev. Plant Biol. 59, 89 (2008)CrossRefGoogle Scholar
  17. 17.
    Mallick N., Mohn F.H.: Ecotoxicol. Environ. Saf. 55, 64 (2003)CrossRefGoogle Scholar
  18. 18.
    Zeng J., Yang L., Wang W.-X.: Aquat. Toxicol. 91, 212 (2009)CrossRefGoogle Scholar
  19. 19.
    Sikora J., Żurawski J., Rutkowska J., Poniedziałek B., Wiktorowicz K., Dudkowiak A.: Ochr. Środ. Zas. Nat. 41, 293 (2009)Google Scholar
  20. 20.
    Adir N.: Photosynth. Res. 85, 15 (2005)CrossRefGoogle Scholar
  21. 21.
    MacColl R.: Biochim. Biophys. Acta 1657, 73 (2004)CrossRefGoogle Scholar
  22. 22.
    Butler W.L.: Annu. Rev. Plant Physiol. 29, 345 (1978)CrossRefGoogle Scholar
  23. 23.
    Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stainer R.Y.: J. Gen. Microbiol. 111, 1 (1979)Google Scholar
  24. 24.
    Olejarz B., Bursa B., Szyperska I., Ion R.-M., Dudkowiak A.: Int. J. Thermophys. 31, 163 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Braslavsky E., Heibel G.E.: Chem. Rev. 92, 1381 (1992)CrossRefGoogle Scholar
  26. 26.
    Gensch T., Viappiani C.: Photochem. Photobiol. Sci. 2, 699 (2003)CrossRefGoogle Scholar
  27. 27.
    Abbruzzetti S., Viappiani C., Murgida D.H., Erra-Balsells R., Bilmes G.M.: Chem. Phys. Lett. 304, 167 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Planner A., Fra̧ckowiak D.: J. Photochem. Photobiol. A 140, 223 (2001)CrossRefGoogle Scholar
  29. 29.
    Siejak P., Fra̧ckowiak D.: J. Photochem. Photobiol. B 88, 126 (2007)CrossRefGoogle Scholar
  30. 30.
    Cotterill R.M.J.: Biophysics. Wiley, Chichester (2002)Google Scholar
  31. 31.
    Pinchasov Y., Berner T., Dubinsky Z.: Water Air Soil Pollut. 175, 117 (2006)CrossRefGoogle Scholar
  32. 32.
    Boucher N., Carpertier R.: Photosynth. Res. 59, 167 (1999)CrossRefGoogle Scholar
  33. 33.
    Murthy S.D.S., Mohanty P.: Biol. Plant. 37, 79 (1995)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • A. Dudkowiak
    • 1
  • B. Olejarz
    • 1
  • J. Łukasiewicz
    • 1
  • J. Banaszek
    • 1
  • J. Sikora
    • 2
  • K. Wiktorowicz
    • 2
  1. 1.Faculty of Technical PhysicsPoznan University of TechnologyPoznanPoland
  2. 2.Department of Biology and Environmental SciencesK. Marcinkowski University of Medical SciencesPoznanPoland

Personalised recommendations