International Journal of Thermophysics

, Volume 31, Issue 11–12, pp 2380–2393 | Cite as

Comparison of Thermal Conductivity and Thermal Boundary Conductance Sensitivities in Continuous-Wave and Ultrashort-Pulsed Thermoreflectance Analyses

  • Patrick E. HopkinsEmail author
  • Justin R. Serrano
  • Leslie M. Phinney


Thermoreflectance techniques are powerful tools for measuring thermophysical properties of thin film systems, such as thermal conductivity, Λ, of individual layers, or thermal boundary conductance across thin film interfaces (G). Thermoreflectance pump–probe experiments monitor the thermoreflectance change on the surface of a sample, which is related to the thermal properties in the sample of interest. Thermoreflectance setups have been designed with both continuous wave (cw) and pulsed laser systems. In cw systems, the phase of the heating event is monitored, and its response to the heating modulation frequency is related to the thermophysical properties; this technique is commonly termed a phase sensitive thermoreflectance (PSTR) technique. In pulsed laser systems, pump and probe pulses are temporally delayed relative to each other, and the decay in the thermoreflectance signal in response to the heating event is related to the thermophysical properties; this technique is commonly termed a transient thermoreflectance (TTR) technique. In this work, mathematical models are presented to be used with PSTR and TTR techniques to determine the Λ and G of thin films on substrate structures. The sensitivities of the models to various thermal and sample parameters are discussed, and the advantages and disadvantages of each technique are elucidated from the results of the model analyses.


Continuous wave laser Phase sensitive thermoreflectance Thermal boundary conductance Thermal conductivity Thermoreflectance Thin films Transient thermoreflectance Ultrashort pulsed laser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R.: J. Appl. Phys. 93, 793 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Cahill D.G., Goodson K.E., Majumdar A.: J. Heat Transf. 124, 223 (2002)CrossRefGoogle Scholar
  3. 3.
    Cahill D.G.: Microscale Thermophys. Eng. 1, 85 (1997)CrossRefGoogle Scholar
  4. 4.
    Tai Y.C., Mastrangelo C.H., Muller R.S.: J. Appl. Phys. 63, 1442 (1988)CrossRefADSGoogle Scholar
  5. 5.
    Tai Y.C., Mastrangelo C.H., Muller R.S.: J. Appl. Phys. 66, 3420 (1989)CrossRefADSGoogle Scholar
  6. 6.
    Cahill D.G.: Rev. Sci. Instrum. 61, 802 (1990)CrossRefADSGoogle Scholar
  7. 7.
    Cahill D.G.: Rev. Sci. Instrum. 73, 10 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Hopkins P.E., Phinney L.M.: J. Heat Transf. 131, 043201 (2009)CrossRefGoogle Scholar
  9. 9.
    Shi L., Li D., Yu C., Jang W., Kim D., Yao Z., Kim P., Majumdar A.: J. Heat Transf. 125, 881 (2003)CrossRefGoogle Scholar
  10. 10.
    Kim P., Shi L., Majumdar A., McEuen P.L.: Phys. Rev. Lett. 87, 215502 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Koh Y.K., Singer S.L., Kim W., Zide J.M.O., Lu H., Cahill D.G, Majumdar A., Gossard A.C.: J. Appl. Phys. 105, 054303 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Tong T., Zhao Y., Delzeit L., Kashani A., Meyyappan M., Majumdar A.: IEEE Trans. Compon. Packag. Technol. 30, 92 (2007)CrossRefGoogle Scholar
  13. 13.
    Ohsone Y., Wu G., Dryden J., Zok F., Majumdar A.: J. Heat Transf. 121, 954 (1999)CrossRefGoogle Scholar
  14. 14.
    Li B., Pottier L., Roger J.P., Fournier D.: Thin Solid Films 352, 91 (1999)CrossRefADSGoogle Scholar
  15. 15.
    Li B., Roger J.P., Pottier L., Fournier D.: J. Appl. Phys. 86, 5314 (1999)CrossRefADSGoogle Scholar
  16. 16.
    Pottier L.: Appl. Phys. Lett. 64, 1618 (1994)CrossRefADSGoogle Scholar
  17. 17.
    Chiritescu C., Cahill D.G., Nguyen N., Johnson D., Bodapati A., Keblinski P., Zschack P.: Science 315, 351 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Costescu R.M., Cahill D.G., Fabreguette F.H., Sechrist Z.A., George S.M.: Science 303, 989 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Hopkins P.E., Norris P.M., Stevens R.J., Beechem T., Graham S.: J. Heat Transf. 130, 062402 (2008)CrossRefGoogle Scholar
  20. 20.
    Hopkins P.E., Salaway R.N., Stevens R.J., Norris P.M.: Int. J. Thermophys. 28, 947 (2007)CrossRefGoogle Scholar
  21. 21.
    Hopkins P.E., Stevens R.J., Norris P.M.: J. Heat Transf. 130, 022401 (2008)CrossRefGoogle Scholar
  22. 22.
    Stoner R.J., Maris H.J.: Phys. Rev. B 48, 16373 (1993)CrossRefADSGoogle Scholar
  23. 23.
    Schmidt A.J., Chen X., Chen G.: Rev. Sci. Instrum. 79, 114902 (2008)CrossRefADSGoogle Scholar
  24. 24.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, New York, 1959), p. 109Google Scholar
  25. 25.
    Feldman A.: High Temp. High Press. 31, 293 (1999)CrossRefGoogle Scholar
  26. 26.
    Cahill D.G.: Rev. Sci. Instrum. 75, 5119 (2004)CrossRefADSGoogle Scholar
  27. 27.
    Incropera F., DeWitt D.P.: Fundamentals of Heat and Mass Transfer, 4th edn. Wiley, New York (1996)Google Scholar
  28. 28.
    Costescu R.M., Wall M.A., Cahill D.G.: Phys. Rev. B 67, 054302 (2003)CrossRefADSGoogle Scholar
  29. 29.
    Lee S.-M., Cahill D.G.: J. Appl. Phys. 81, 2590 (1997)CrossRefADSGoogle Scholar
  30. 30.
    Stevens R.J., Smith A.N., Norris P.M.: J. Heat Transf. 127, 315 (2005)CrossRefGoogle Scholar
  31. 31.
    Gray D.E.: American Institute of Physics Handbook, 3rd edn. McGraw Hill, New York (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patrick E. Hopkins
    • 1
    Email author
  • Justin R. Serrano
    • 1
  • Leslie M. Phinney
    • 1
  1. 1.Engineering Science CenterSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations