Advertisement

International Journal of Thermophysics

, Volume 31, Issue 6, pp 1165–1174 | Cite as

Thermophysical Properties of Ag and Ag–Cu Liquid Alloys at 1098K to 1573K

  • Przemysław Fima
  • Natalia Sobczak
Article

Abstract

The surface tension and density of liquid Ag and Ag–Cu alloys were measured with the sessile drop method. The sessile drop tests were carried out at temperatures from 1098K to 1573 K, on cooling (temperature decreasing stepwise) under a protective atmosphere of high purity Ar (6N). The density of liquid Ag and Ag–Cu alloys decreases linearly with increasing temperature, and an increase in concentration of copper results in a lower density. The surface tension dependence on temperature can be described by linear equations, and the surface tension increases with increasing Cu content. The results of the measurements show good agreement with existing literature data and with thermodynamic calculations made using the Butler equation.

Keywords

Ag–Cu alloys Density Sessile drop Surface tension Thermodynamic modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durov O.V., Krasovskiy V.P.: Mater. Sci. Eng. A 495, 164 (2008)CrossRefGoogle Scholar
  2. 2.
    Lopez-Cuevas J., Jones H., Atkinson H.V.: Mater. Sci. Eng. A 266, 161 (1999)CrossRefGoogle Scholar
  3. 3.
    Kozlova O., Voytovych R., Devismes M.F., Eustathopoulos N.: Mater. Sci. Eng. A 495, 96 (2008)CrossRefGoogle Scholar
  4. 4.
    Andrieux J., Dezellus O., Bosselet F., Viala J.C.: J. Phase Equilib. Diff. 30, 40 (2009)CrossRefGoogle Scholar
  5. 5.
    Krause W., Saurewald F., Anorg Z.: Allg. Chem. 181, 347 (1929)CrossRefGoogle Scholar
  6. 6.
    Sebo P., Gallois B., Lupis C.H.P.: Metall. Trans. B 8, 691 (1977)Google Scholar
  7. 7.
    Brillo J., Egry I., Ho I.: Int. J. Thermophys. 27, 494 (2006)CrossRefGoogle Scholar
  8. 8.
    Kucharski M., Fima P., Skrzyniarz P., Przebinda-Stefanova V.: Arch. Metall. Mater. 51, 389 (2006)Google Scholar
  9. 9.
    Krause W., Saurewald F., Michalke M., Anorg Z.: Allg. Chem. 181, 353 (1929)CrossRefGoogle Scholar
  10. 10.
    Bricard A., Eustathopulos N., Joud J.C., Desre P.: CR Acad. Sci. 276, 1613 (1973)Google Scholar
  11. 11.
    Lee J., Tanaka T., Asano Y, Hara S.: Mater. Trans. 45, 2719 (2004)CrossRefGoogle Scholar
  12. 12.
    Novakovic R., Ricci E., Giuranno D., Passerone A.: Surf. Sci. 576, 175 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Sobczak N., Nowak R., Radziwill W., Budzioch J., Glenz A.: Mater. Sci. Eng. A 495, 43 (2008)CrossRefGoogle Scholar
  14. 14.
    Fima P., Nowak R., Sobczak N.: J. Mater. Sci. 45, 2009 (2010)CrossRefADSGoogle Scholar
  15. 15.
    I. Egry, D. Holland-Moritz, R. Novakovic, E. Ricci, R. Wunderlich, N. Sobczak, Int. J. Thermophys. (2010). doi: 10.1007/s10765-010-0704-1
  16. 16.
    Liggeri L., Passerone A.: High Technol. 7, 82 (1989)Google Scholar
  17. 17.
    M. Vivani, ICFAM-CNR Tech. Report, CNR, Genoa (1999)Google Scholar
  18. 18.
    Gebhardt E., Dorner S.: Z. Metallkd. 42, 353 (1951)Google Scholar
  19. 19.
    Gebhardt E., Becker M., Tragner E.: Z. Metallkd. 44, 379 (1953)Google Scholar
  20. 20.
    Lauermann L., Metzger G.: Z. Phys. Chem. 216, 37 (1960)Google Scholar
  21. 21.
    Kirshenbaum A.D., Cahill J.A., Grosse A.V.: J. Inorg. Nucl. Chem. 24, 333 (1962)CrossRefGoogle Scholar
  22. 22.
    Lucas L.D.: Mem. Scientif. Rev. Metall. 61, 1 (1964)Google Scholar
  23. 23.
    Nagamori M.: Trans. Metall. Soc. AIME 245, 1897 (1969)Google Scholar
  24. 24.
    Bernard G., Lupis C.H.P.: Metall. Trans. 2, 555 (1971)CrossRefGoogle Scholar
  25. 25.
    Lucas L.D.: Mem. Etud. Sci. Rev. Met. 69, 39 (1972)Google Scholar
  26. 26.
    Martin-Garin L., Gomez M., Bedon P., Desre P.: J. Less-common Met. 41, 65 (1975)CrossRefGoogle Scholar
  27. 27.
    Nogi K., Oishi K., Ogino K.: Mater. Trans. JIM 30, 137 (1989)Google Scholar
  28. 28.
    Gąsior W., Pstruś J., Moser Z., Krzyżak A., Fitzner K.: J. Phase Equilib. 24, 40 (2003)Google Scholar
  29. 29.
    Kucharski M., Fima P.: Monatsh. Chem. 136, 1841 (2005)CrossRefGoogle Scholar
  30. 30.
    Keene B.J.: Int. Mater. Rev. 38, 157 (1993)Google Scholar
  31. 31.
    Mills K.C., Su Y.C.: Int. Mater. Rev. 51, 329 (2006)CrossRefADSGoogle Scholar
  32. 32.
    Ozawa S., Morohoshi K., Hibiya T., Fukuyama H.: J. Appl. Phys. 107, 014910-1 (2010)CrossRefADSGoogle Scholar
  33. 33.
    Morita S., Kasama A.: J. Jpn. Inst. Met. 8, 787 (1976)Google Scholar
  34. 34.
    Sangiorgi R., Muolo M.L., Passerone A.: Acta Metall. 30, 1597 (1982)CrossRefGoogle Scholar
  35. 35.
    Butler J.A.V.: Proc. R. Soc. A 135, 348 (1935)CrossRefADSGoogle Scholar
  36. 36.
    Redlich O., Kister A.T.: Ind. Eng. Chem. 40, 345 (1948)CrossRefGoogle Scholar
  37. 37.
    Tanaka T., Hack K., Iida T., Hara S.: Z. Metallkd. 87, 380 (1996)Google Scholar
  38. 38.
    A.T. Dinsdale, A. Watson, A. Kroupa, A. Zemanowa, J. Vrestal, J. Vidal, COST 531 v3.0 Thermodynamic Database (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for High Temperature StudiesFoundry Research InstituteKrakowPoland
  2. 2.Institute of Metallurgy and Materials SciencePolish Academy of SciencesKrakowPoland

Personalised recommendations