Advertisement

International Journal of Thermophysics

, Volume 31, Issue 4–5, pp 949–965 | Cite as

Thermophysical Properties of Liquid AlTi-Based Alloys

  • I. Egry
  • D. Holland-Moritz
  • R. Novakovic
  • E. Ricci
  • R. Wunderlich
  • N. Sobczak
Article

Abstract

The surface tension and density of three liquid AlTi-based alloys (AlTiV, AlTiNb, and AlTiTa) have been measured using electromagnetic levitation as a tool for containerless processing. Surface tension has been determined by the oscillating-drop method, while the density was measured using a shadowgraph technique. Both quantities were determined over a wide temperature range, including the undercooled regime. In addition, sessile-drop and pendant-drop experiments to determine the surface tension were performed in a recently built high-temperature furnace. The measured data were compared to thermodynamic calculations using phenomenological models and the Butler equation. Generally, good agreement was found.

Keywords

Levitated drop Liquid metals Pendant drop Sessile drop Surface tension Thermodynamic modeling Titanium aluminides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ti-2007 Science and Technology, Proceedings of the 11th World Conference on Titanium, Kyoto, Japan, 2007, ed. by M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, K. Maruyama (The Japan Institute of Metals, Sendai, 2007)Google Scholar
  2. 2.
    Long M., Rack H.J.: Biomaterials 19, 1621 (1998)CrossRefGoogle Scholar
  3. 3.
    D. Jarvis, Mater. World 11 (2005)Google Scholar
  4. 4.
    Brillo J., Egry I.: Int. J. Thermophys. 24, 1155 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Harding, R. Brooks, G. Pottlacher, J. Brillo, in Gamma Titanium Aluminides, ed. by Y. Kim, H. Clemens, A. Rosenberger (TMS, Warrendale, PA, 2003), p. 75Google Scholar
  6. 6.
    Herlach D.M., Cochrane R.F., Egry I., Fecht H.J., Greer A.L.: Int. Mater. Rev. 38, 273 (1993)Google Scholar
  7. 7.
    Cummings D.L., Blackburn D.A.: J. Fluid Mech. 224, 395 (1991)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Sauerland S., Eckler K., Egry I.: J. Mater. Sci. 11, 330 (1992)Google Scholar
  9. 9.
    Schneider S., Egry I., Seyhan I.: Int. J. Thermophys. 23, 1241 (2002)CrossRefGoogle Scholar
  10. 10.
    Naidich Yu.V.: Prog. Surf. Membr. Sci. 14, 353 (1981)Google Scholar
  11. 11.
    Garandet J.P., Vinet B., Gros P.: J. Colloid Interf. Sci. 165, 351 (1994)CrossRefGoogle Scholar
  12. 12.
    Kohler F.: Monatsch. Chem. 91, 738 (1960)CrossRefGoogle Scholar
  13. 13.
    Toop G.W.: Trans. AIME 233, 450 (1965)Google Scholar
  14. 14.
    Chou K.-C.: Calphad 19, 313 (1995)CrossRefGoogle Scholar
  15. 15.
    Butler J.A.V.: Proc. R. Soc. A 135, 348 (1932)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Singh R.N.: Can. J. Phys. 65, 309 (1987)ADSGoogle Scholar
  17. 17.
    Singh R.N., Sommer F.: Rep. Prog. Phys. 60, 57 (1997)CrossRefADSGoogle Scholar
  18. 18.
    Speiser R., Poirier D.R., Yeum K.: Scr. Metall. 21, 687 (1987)CrossRefGoogle Scholar
  19. 19.
    T. Tanaka, K. Hack, S. Hara, MRS Bull. April, 45 (1999)Google Scholar
  20. 20.
    Egry I., Brillo J., Matsushita T.: Mater. Sci. Eng. A 413–414, 460 (2005)Google Scholar
  21. 21.
    Novakovic R., Ricci E., Giuranno D., Passerone A.: Surf. Sci. 576, 175 (2005)CrossRefADSGoogle Scholar
  22. 22.
    N. Saunders COST 507, Thermochemical Database for Light Metal Alloys, ed. by I. Ansara, A.T. Dinsdale, M.H. Rand, vol. 2 (European Union, Luxembourg, 1998)Google Scholar
  23. 23.
    Witusiewicz V.T., Bondar A.A., Hecht U., Rex S., Ya Velikanova T.: J. Alloys Compd. 465, 64 (2008)CrossRefGoogle Scholar
  24. 24.
    Iida T., Guthrie R.I.L.: The Physical Properties of Liquid Metals. Clarendon Press, Oxford (1993)Google Scholar
  25. 25.
    Lang G., Laty P., Joud J.C., Desré P.: Z. Metall. 68, 113 (1977)Google Scholar
  26. 26.
    Ishikawa T., Paradis P.-F., Itami T., Yoda S.: J. Chem. Phys. 118, 7912 (2003)CrossRefADSGoogle Scholar
  27. 27.
    Vinet B., Magnusson L., Fredriksson H., Desré P.J.: J. Colloid Interf. Sci. 255, 363 (2002)CrossRefGoogle Scholar
  28. 28.
    Paradis P.-F., Ishikawa T., Yoda S.: J. Appl. Phys. 97, 053506 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • I. Egry
    • 1
  • D. Holland-Moritz
    • 1
  • R. Novakovic
    • 2
  • E. Ricci
    • 2
  • R. Wunderlich
    • 3
  • N. Sobczak
    • 4
  1. 1.Institut für Materialphysik im WeltraumGerman Aerospace Center DLRCologneGermany
  2. 2.Institute for Energetics and InterphasesNational Research Council CNRGenoaItaly
  3. 3.Institute for Micro and NanomaterialsUniversity of UlmUlmGermany
  4. 4.Foundry Research Institute (CHTS)CracowPoland

Personalised recommendations