Advertisement

International Journal of Thermophysics

, Volume 31, Issue 1, pp 42–54 | Cite as

Influence of Primary Milling on Structural and Electrical Properties of Bi4Ti3O12 Ceramics Obtained by Sintering Process

  • J. Dercz
  • G. Dercz
  • K. Prusik
  • B. Solecka
  • A. Starczewska
  • J. Ilczuk
Article

Abstract

In this article, the influence of primary mechanical milling of precursors on the microstructure and dielectric properties of Bi4Ti3O12 ceramics was studied. Precursor material (mixture of Bi2O3 and TiO2 powders) was ground by a high-energy attritorial mill for (1, 3, 5, and 10) h. Bi4Ti3O12 ceramics were obtained by a solid-state reaction process, synthesized at an intermediate temperature (800 °C) and finally sintered at high temperature (1140 °C). Structure studies were performed by X-ray diffraction (XRD) and scanning electron microscopy techniques. XRD patterns were analyzed by the Rietveld method using the DBWS 9807a program. The thermal properties of the studied materials were measured using differential thermal analysis and thermal gravimetric techniques. These studies indicate that one-, three-, and five-hour primary high-energy ball milling followed by sintering is a promising technique for pure Bi4Ti3O12 ferroic ceramics preparation. The investigation of Bi4Ti3O12 shows that ceramics obtained from a precursor and milled for 5 h have the best dielectric properties.

Keywords

Bi4Ti3O12 ceramics Ferroelectric High-energy ball milling Rietveld method Sintering Thermal properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurivillius B.: Arkiv. Kemi 1, 499 (1949)Google Scholar
  2. 2.
    Kikuchi T., Watanabe A., Uchida K.: Mater. Res. Bull. 12, 299 (1977)CrossRefGoogle Scholar
  3. 3.
    Park B.H., Kang B.S., Bu S.D., Noh T.W., Lee J., Joe W.: Nature 401, 682 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Chon U., Jang H.M., Kim M.G., Chang C.H.: Phys. Rev. Lett. 89, 87601 (2002)CrossRefADSGoogle Scholar
  5. 5.
    Lisoni J.G., Millán P., Vila E., De Vidales J.L.M., Hoffmann T., Castro A.: Chem. Mater. 13, 2084 (2001)CrossRefGoogle Scholar
  6. 6.
    Ricote J., Pardo L., Castro A., Millán P.: J. Solid State Chem. 160, 54 (2001)CrossRefADSGoogle Scholar
  7. 7.
    Kong L.B., Ma J., Zhu W., Tan O.K.: Mater. Lett. 51, 108 (2001)CrossRefGoogle Scholar
  8. 8.
    Millán P., Rojo J.M., Pardo L., Ricote J., Castro A.: Mater. Res. Bull. 36, 1277 (2001)CrossRefGoogle Scholar
  9. 9.
    Vasconcelos I.F., Pimenta M.A., Sombra A.S.B.: J. Mater. Sci. 36, 587 (2001)CrossRefGoogle Scholar
  10. 10.
    Ng S.H., Xue J., Wang J.: J. Am. Ceram. Soc. 85, 2660 (2002)Google Scholar
  11. 11.
    Kojima T., Watanabe T., Funakubo H., Saito K., Osada M., Kakihana M.: J. Appl. Phys. 93, 1707 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Kan Y., Xihai J., Wang P., Li Y., Chen Y.-B., Yan D.: Mater. Res. Bull. 38, 567 (2003)CrossRefGoogle Scholar
  13. 13.
    Suryanarayana C.: Prog. Mater. Sci. 46, 1 (2001)CrossRefGoogle Scholar
  14. 14.
    Koch C.C.: Ann. Rev. Mater. Sci 19, 121 (1989)CrossRefADSGoogle Scholar
  15. 15.
    Schultz L.: J. Less-Common Met. 145, 233 (1988)CrossRefGoogle Scholar
  16. 16.
    Weeber A.W., Bakker H.: Physica. B 153, 93 (1988)CrossRefADSGoogle Scholar
  17. 17.
    Koch C.C.: Nanostruct. Mater 2, 109 (1993)CrossRefGoogle Scholar
  18. 18.
    Yavari A.R.: Mater. Trans. JIM 36, 228 (1995)ADSGoogle Scholar
  19. 19.
    Wang J., Xue J.M., Wan D.M., Gan B.K.: J. Solid State Chem. 154, 321 (2000)CrossRefADSGoogle Scholar
  20. 20.
    Kong L.B., Ma J., Zhu W., Tan O.K.: Mater. Lett. 51, 108 (2001)CrossRefGoogle Scholar
  21. 21.
    Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Quinelato C., Longo E., Varela J.A.: Ceram. Int. 32, 707 (2006)CrossRefGoogle Scholar
  22. 22.
    Stojanovic B.D., Paiva-Santos C.O., Jovalekic C., Simoes A.Z., Filho M., Lazarevic Z., Varela J.A.: Mater. Chem. Phys. 96, 471 (2006)CrossRefGoogle Scholar
  23. 23.
    Yau C.H., Palan R., Tran K., Buchanan R.C.: Appl. Phys. Lett. 85(20), 4714 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Du Y.L., Chan G., Zhang M.S.: Solid State Commun. 132, 175 (2004)CrossRefADSGoogle Scholar
  25. 25.
    Zhang F., Karaki T., Adachi M.: Jpn. J. Appl. Phys. 45(9B), 7385 (2006)CrossRefADSGoogle Scholar
  26. 26.
    Stojanovic B.D., Paiva-Santos C.O., Cilense M., Jovalekic C., Lazarevic Z.Z: Mater. Res. Bull. 43, 1743 (2008)CrossRefGoogle Scholar
  27. 27.
    Rietveld H.M.: J. Appl. Cryst. 3, 65 (1969)CrossRefGoogle Scholar
  28. 28.
    R.A. Young, D.B. Wiles, Adv. X-ray Anal. 1 (1980)Google Scholar
  29. 29.
    R.A. Young, in The Rietveld Method (Oxford University Press, Oxford, 1993), pp. 17–32Google Scholar
  30. 30.
    Bouregba R., Poullain G.: J. Appl. Phys. 93, 522 (2003)CrossRefADSGoogle Scholar
  31. 31.
    Hill R.J., Howard C.J.: J. Appl. Cryst. 20, 467 (1987)CrossRefGoogle Scholar
  32. 32.
    Dorrian J.F., Newnham R.E., Smith D.K., Kay M.I.: Ferroelectrics 3, 17 (1971)Google Scholar
  33. 33.
    Shulman H.S., Damjanovic D., Setter N.: J. Am. Ceram. Soc. 83, 528 (2000)CrossRefGoogle Scholar
  34. 34.
    Jimenez B., Jimenez R., Castro A., Millán P., Pardo L.: J. Phys.-Condens. Mater. 13, 7315 (2001)CrossRefADSGoogle Scholar
  35. 35.
    Wu Y., Forbess M.J., Seraji S., Limmer S.J., Chou T.P., Cao G.Z.: J. Appl. Phys. 89, 5647 (2001)CrossRefADSGoogle Scholar
  36. 36.
    Li W., Chen K., Yao Y.Y., Zhu J.S., Wang Y.N.: Appl. Phys. Lett. 85, 4717 (2004)CrossRefADSGoogle Scholar
  37. 37.
    Jardiel T., Caballero A.C., Villegas M.: J. Eur. Ceram. Soc. 27, 4115 (2007)CrossRefGoogle Scholar
  38. 38.
    Takahashi M., Noguchi Y., Miyayama M.: Jpn. J. Appl. Phys. 41, 7053 (2002)CrossRefADSGoogle Scholar
  39. 39.
    Takahashi M., Noguchi Y., Miyayama M.: Jpn. J. Appl. Phys. 42, 6222 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. Dercz
    • 1
  • G. Dercz
    • 2
  • K. Prusik
    • 2
  • B. Solecka
    • 3
  • A. Starczewska
    • 3
  • J. Ilczuk
    • 1
  1. 1.Department of Material ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Institute of Materials ScienceUniversity of SilesiaKatowicePoland
  3. 3.Institute of PhysicsSilesian University of TechnologyKatowicePoland

Personalised recommendations