International Journal of Thermophysics

, Volume 31, Issue 1, pp 163–171 | Cite as

Spectral Properties and Deactivation Processes of Anionic Porphyrin Coupled with TiO2 Nanostructure

  • B. Olejarz
  • B. Bursa
  • I. Szyperska
  • R.-M. Ion
  • A. Dudkowiak
Article

Abstract

Meso-tetrakis (4-sulphonatophenyl)porphyrin (TSPP) and its complex with TiO2 were studied by absorption, fluorescence, and steady-state and time-resolved photothermal spectroscopy. A TiO2–TSPP complex was obtained by covalent bonding of anionic porphyrin with the nanostructural form of TiO2. The TiO2 colloidal carriers modifying the thermal energy distribution and considerably influencing the photophysical processes were found to lead to changes in the population of the porphyrin singlet and triplet states, resulting in singlet oxygen generation and/or electron transfer.

Keywords

Optical and photothermal spectroscopy Porphyrin Singlet oxygen TiO2 nanostructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gao J., Xu B.: Nano Today 4, 37 (2009)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Wang S., Gao R., Zhou F., Selke M.: J. Mater. Chem. 14, 487 (2004)CrossRefGoogle Scholar
  3. 3.
    Ion R.-M., Brezoi D.-V.: Solid State Phenom. 106, 79 (2005)CrossRefGoogle Scholar
  4. 4.
    Fujishima A., Honda K.: Nature 238, 37 (1972)CrossRefADSGoogle Scholar
  5. 5.
    Si H.-Y., Sun Z.-H., Zhang H.-L.: Colloid. Surf. A 313–314, 604 (2008)CrossRefGoogle Scholar
  6. 6.
    Wróbel D., Dudkowiak A.: Mol. Cryst. Liq. Cryst., 448, 15 (2006)CrossRefGoogle Scholar
  7. 7.
    Scheer H.: Chlorophylls. CRC Press, Boca Raton, FL (1991)Google Scholar
  8. 8.
    S. Agirtas, R.-M. Ion, O. Bekarogulu, Sci. Eng. C, 396 (1999)Google Scholar
  9. 9.
    Rosencwaig A.: Photoacoustics and Photoacoustic Spectroscopy. Wiley & Sons, New York (1980)Google Scholar
  10. 10.
    Braslavsky S.E., Heibel G.E.: Chem. Rev. 92, 1381 (1992)CrossRefGoogle Scholar
  11. 11.
    Andres G.O., Martinez-Junza V., Crovetto L., Braslavsky S.E.: J. Phys. Chem. A 110, 10185 (2006)CrossRefGoogle Scholar
  12. 12.
    Kathiravan A., Renganathan R.: J. Colloid Interf. Sci. 331, 40 (2009)CrossRefGoogle Scholar
  13. 13.
    Kalyanasudaram K., Neumann-Spallart M.: J. Phys. Chem. 86, 5163 (1982)CrossRefGoogle Scholar
  14. 14.
    Gensch T., Braslavsky S.E.: J. Phys. Chem. 101, 101 (1997)Google Scholar
  15. 15.
    Marti C., Nonell S., Nicolaus M., Torres T.: Photochem. Photobiol. 71, 53 (2000)CrossRefGoogle Scholar
  16. 16.
    Small J.R., Libertini L.J., Small E.W.: Biophys. Chem. 42, 29 (1992)CrossRefGoogle Scholar
  17. 17.
    Wilkinson F., Helman W.P., Ross A.B.: J. Phys. Chem. Ref. Data 22, 113 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Ohtani H., Kobayashi T., Tanno T., Yamada A., Wöhrle D., Ohno T.: Photochem. Photobiol. 44, 125 (1986)CrossRefGoogle Scholar
  19. 19.
    Azenha E.G., Serra A.C., Pineiro M., Pereira M.M., de Melo J.S., Arnaut L.G.: Chem. Phys. 280, 177 (2002)CrossRefGoogle Scholar
  20. 20.
    Xu S., Shen J., Chen S., Zhang M., Shen T.: J. Photochem. Photobiol. B 67, 64 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Olejarz
    • 1
  • B. Bursa
    • 1
  • I. Szyperska
    • 1
  • R.-M. Ion
    • 2
  • A. Dudkowiak
    • 1
  1. 1.Faculty of Technical PhysicsPoznan University of TechnologyPoznańPoland
  2. 2.National Institute of R&D for Chemistry and Petrochemistry-ICECHIMBucharestRomania

Personalised recommendations