International Journal of Thermophysics

, Volume 29, Issue 6, pp 2116–2125

Optothermoacoustic Phenomena in Highly Diluted Suspensions of Gold Nanoparticles

Article

Abstract

An optoacoustic (OA) sensor was designed, fabricated, and used to detect spherical gold nanoparticles (NPs) in diluted suspensions. The sensor, operating in the backward mode, was designed to measure signals from microscopic volumes of nanoparticulate suspensions in water. Thermal nonlinearity was observed in the course of OA signal generation. The irradiation of a microvolume of gold nanoparticles at the wavelength matching the peak of their plasmon resonance absorption gives rise to a multitude of thermomechanical processes, including heating of NPs below the critical temperature of water (374 K). The thermal diffusion from nanoparticles to water takes place; however, formation of vapor nanobubbles is avoided. As a result, a specific acoustic signal is produced exhibiting nonlinear behavior with respect to the incident laser pulse energy. The optoacoustic profile of the laser-induced signal generated in a thin layer of highly diluted suspensions of gold nanospheres was examined, thereby providing a basis for a method for detection of metal nanoparticles with high sensitivity.

Keywords

Detection limits Nanotechnology Optoacoustic biosensor Thermal nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Oldenburg, R.D. Averitt, S.L. Wescott, N.J. Halas, Chem. Phys. Lett. 288, 243 (1998)CrossRefGoogle Scholar
  2. 2.
    D.V. Guzatov, A.A. Oraevsky, A.N. Oraevsky, Quantum Electron. 33, 817 (2003)CrossRefGoogle Scholar
  3. 3.
    N.G. Portney, M. Ozkan, Anal. Bioanal. Chem. 384, 620 (2006)CrossRefGoogle Scholar
  4. 4.
    A.A. Oraevsky, A.A. Karabutov, E.V. Savateeva, Proc. SPIE 4434, 60 (2001)CrossRefADSGoogle Scholar
  5. 5.
    J.A. Copland, M. Eghtedari, V.L. Popov, N. Kotov, N. Mamedova, M. Motamedi, A.A. Oraevsky, Mol. Imaging Biol. 6, 341 (2004)CrossRefGoogle Scholar
  6. 6.
    G. Diebold, M.I. Khan, S.M. Park, Science 250, 101 (1990)CrossRefADSGoogle Scholar
  7. 7.
    S. Ermilov, D.V. Huzatau, V.V. Klimov, A.P. Kanavin, A.A. Oraevsky, J. Appl. Phys. 99, 123177 (2006)Google Scholar
  8. 8.
    S.V. Egerev, O.V. Ovchinnikov, A.V. Fokin, V.V. Klimov, D. Huzatau, A.P. Kanavin, A.A. Oraevsky, Proc. SPIE 5697,73 (2005)CrossRefADSGoogle Scholar
  9. 9.
    C. Frez, I.G. Calasso, G.J. Diebold, J. Chem. Phys. 124, 034905 (2006)CrossRefADSGoogle Scholar
  10. 10.
    S.V. Egerev, O.V. Puchenkov, Sov. Phys. Acoust. 31, 30 (1986)Google Scholar
  11. 11.
    L. Melton, T. Hu, Q. Lu, Rev. Sci. Instrum. 60, 3217 (1989)CrossRefADSGoogle Scholar
  12. 12.
    A.A. Oraevsky, S.L. Jacques, R.O. Esenaliev, F.K. Tittel, Proc. SPIE 2134A,122 (1994)ADSGoogle Scholar
  13. 13.
    O. Puchenkov, S. Malkin, Rev. Sci. Instrum. 67, 672 (1996)CrossRefADSGoogle Scholar
  14. 14.
    T. Autrey, N.S. Foster, K. Klepzig, J.E. Amonette, J.L. Daschbach, Rev. Sci. Instrum. 69, 2246 (1998)CrossRefADSGoogle Scholar
  15. 15.
    G. Mie, Ann. Phys. (Paris) 25, 377ADSGoogle Scholar
  16. 16.
    A.L. McKenzie, Phys. Med. Biol. 35, 1175 (1990)CrossRefGoogle Scholar
  17. 17.
    A.A. Karabutov, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky, J. Appl. Phys. 87, 2003 (2000)CrossRefADSGoogle Scholar
  18. 18.
    A. Takami, H. Kurita, S. Koda, J. Phys. Chem. B 103, 1226 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Andreyev Acoustics InstituteMoscowRussia
  2. 2.Fairway Medical TechnologiesHoustonUSA

Personalised recommendations